
Chapter 8

Simulation

During OOP modeling, we make assumptions on the system regarding the relationship between objects and data and

use algorithms to represent their behavior. These models are just an approximation of real systems. Real systems

include complex interactions usually hardly represented by exact analytical models. In these cases, systems’ behavior

must be simulated.

Simulations are used to generate data to obtain statistics of real systems. These statistics are used to make decisions

on variables configuration that are relevant for systems’ performance. For example, if we need to decide how many

points of sale we must have in a supermarket, we can simulate customers arrival, products availability, shopping time,

and also measure check out times. We can estimate the optimal number of points of sale that result in a desirable

customers’ check out time.

The main advantages of simulations are fast experimentation, cost, and risk reduction, design feedback, and data

generation.

Simulations mainly depend on time and runtime. The former corresponds to the virtual clock that approximates the

real time elapsed in the simulation. The latter represents the required computational time to carry out the simulation.

In general, we want to simulate large amounts of time using a minimal amount of runtime.

Events occurrences are modeled using probability distributions to have more realistic simulations. For example,

the arrival time of customers, or the customers’ service time in a given store, can be modeled using an exponential

distribution. For this kind of distribution, it is necessary to define the average rate of event occurrences. For instance,

when a person arrives at a queue each 20 minutes, then this event has a distribution with a rate of 1/20. The following

code shows an example of the use of the expovariate function to generate exponentially distributed times:

1 #00_expovariate.py



210 CHAPTER 8. SIMULATION

2

3 from random import expovariate

4

5 '''We added a basis time of 0.5 to prevent

6 time 0 returned by the distribution.'''

7

8 client_arrival_time = round(expovariate(1/20) + 0.5)

9 server_time_1 = round(expovariate(1/50) + 0.5)

10 server_time_2 = round(expovariate(1/50) + 0.5)

11

12 print(client_arrival_time)

13 print(server_time_1)

14 print(server_time_2)

29

53

26

8.1 Synchronous Simulation

It corresponds to one of the simpler ways of implementing a simulation. In this case, we divide the total simulation

time into small intervals. At each interval, the program verifies all activities involved in the system. The general

algorithm of this type of simulation is as follows:

while time simulation does not end do

Increase the time by one unit

if events occur in this time interval then

Simulate events

end if

end while

For instance, let’s consider the case of modeling a car inspection station. This system operates as a queue, where the

vehicles arrive randomly with probability Pc, and are processed by a station during a random amount of time. This

type of problems is known as M/M/k according to Kendal’s notation. This notation defines that customers come to



8.1. SYNCHRONOUS SIMULATION 211

the system in a Markovian way (M ), the service time in the queue is also Markovian (M ), and there are k servers to

attend each car in the waiting queue.

1 # 01_synchronous.py

2

3 from collections import deque

4 import random

5

6

7 class Vehicle:

8 """

9 This class represent vehicles which arrives to the mechanical

10 workshop

11 """

12

13 def __init__(self, vehicles):

14 # When a new vehicle is created is chosen randomly incoming

15 # vehicle type and the average time of service'''

16

17 self.vehicle_type = random.choice(list(vehicles))

18 self._review_time = round(

19 random.expovariate(vehicles[self.vehicle_type]))

20

21 @property

22 def review_time(self):

23 return self._review_time

24

25 @review_time.setter

26 def review_time(self, value):

27 self._review_time = value

28

29 def show_type(self):

30 print("Being treated: {0} with an average time of {1} minutes"

31 .format(self.vehicle_type, self.review_time))

32

33



212 CHAPTER 8. SIMULATION

34 class WorkShop:

35 """

36 This class represent the review line in the workshop.

37 """

38

39 def __init__(self):

40 self.current_task = None

41 self.review_time = 0

42

43 def busy(self):

44 return self.current_task is not None

45

46 def next_vehicle(self, vehicle):

47 self.current_task = vehicle

48 self.review_time = vehicle.review_time

49 vehicle.show_type()

50

51 def tick(self):

52 if self.current_task is not None:

53 self.review_time -= 1

54 if self.review_time <= 0:

55 self.current_task = None

56

57

58 def new_vehicle_arrive():

59 """

60 This function returns if arrive a new vehicle to queue. It is

61 sampled from a uniform probability distribution. The method

62 returns True if the value delivered by the random function is

63 greater than a given value.

64 """

65 return random.random() >= 0.8

66

67

68 def technical_workshop(max_time, vehicles):



8.1. SYNCHRONOUS SIMULATION 213

69 """

70 This function handles the process or technical service.

71 """

72

73 # Fix the random seed

74 random.seed(10)

75

76 # A WorkShop is created

77 workshop = WorkShop()

78

79 # Empty review line

80 review_line = deque()

81

82 # Waiting time

83 waiting_times = []

84

85 # The simulation cycle is defined until the maximum time in

86 # minutes, each time t is increased is evaluated if a new

87 # vehicle arrives at the review queue

88

89 for t in range(max_time):

90 if new_vehicle_arrive():

91 review_line.append(Vehicle(vehicles))

92

93 if not workshop.busy() and len(review_line) > 0:

94 # Next vehicle is taken out from review queue

95 curr_vehicle = review_line.popleft()

96 waiting_times.append(curr_vehicle.review_time)

97 workshop.next_vehicle(curr_vehicle)

98

99 # Decrease one tick of time to waiting vehicle

100 workshop.tick()

101

102 average_time = sum(waiting_times) / len(waiting_times)

103 total_time = sum(waiting_times)



214 CHAPTER 8. SIMULATION

104 print('Statistics:')

105 print('Average waiting time {0:6.2f} min.'.format(average_time))

106 print('Total workshop service time was', '{0:6.2f} min'.format(

107 total_time))

108 print('Total vehicles serviced: {0}'.format(len(waiting_times)))

109

110

111 if __name__ == '__main__':

112

113 # The types of vehicles and the average service time are defined

114 vehicles = {'motorcycle': 1.0 / 8, 'car': 1.0 / 15,

115 'pickup_truck': 1.0 / 20}

116 maximum_time = 200

117 technical_workshop(maximum_time, vehicles)

Output:

Being treated: pickup_truck with an average time of 5 minutes

Being treated: car with an average time of 5 minutes

Being treated: motorcycle with an average time of 36 minutes

Being treated: motorcycle with an average time of 8 minutes

Being treated: motorcycle with an average time of 1 minutes

Being treated: car with an average time of 8 minutes

Being treated: pickup_truck with an average time of 6 minutes

Being treated: motorcycle with an average time of 9 minutes

Being treated: motorcycle with an average time of 14 minutes

Being treated: car with an average time of 2 minutes

Being treated: car with an average time of 43 minutes

Being treated: car with an average time of 9 minutes

Being treated: pickup_truck with an average time of 33 minutes

Being treated: car with an average time of 7 minutes

Being treated: pickup_truck with an average time of 20 minutes

Statistics:

Average waiting time 13.73 min.

Total workshop service time was 206.00 min

Total vehicles serviced: 15



8.2. DISCRETE EVENT SIMULATION (DES) 215

Synchronous simulations require a lot of running time to produce results. Most of the time steps in the main simulation

loop do not produce changes in the system. Verification of system’s states and simulation constraints generates a waste

of CPU time. Due to these downsides, in this chapter, we focus on Discrete Event Simulation (DES).

8.2 Discrete Event Simulation (DES)

In DES paradigm exists a discrete sequence of events distributed in time, in which each event occurs at a determined

instant t that generates a change in system’s state. In contrast with the synchronous simulation, DES assumes that

there are no variations in the system’s states between consecutive events. This assumption allows us to jump directly

to the next event, without wasting runtime. On each iteration, the simulation selects the next event by choosing the one

that occurs first, according to its simulated time. The following pseudocode shows a general discrete-based event

simulation algorithm:

while the events queue is not empty and the simulation time is not over do

select the next event from the queue

move the simulation time to the previously selected event’s time

simulate the event

end while

DES Model components

The following elements comprise a simulation model:

• A set of state variables that describe the system at any time. For example:

A clock that stores the simulation time.

A set of possible events, including the next instant they will take place.

• A set of simulation elements, for example:

A method that controls the flow of different events.

A set of performance variables, useful to keep simulation statistics.

Now we present an example of a technical car inspection station. Figure 8.1 shows the workflow of the system.

1 # 02_DES.py

2



216 CHAPTER 8. SIMULATION

• Update the number of served vehicles
• Clear the workshop for the next vehicle

Yes

No

Yes

Simulation
time

> maximum
time?

What is
the next
event?

Is the
workshop 

busy?

No

Initialize status variables

Return the statistics

Vehicle leaves the workshop

• Serve a vehicle in the queue
• Update the service time

New vehicle arrives

• Add the vehicle into the queue
• Generate the time for the next arrival

Figure 8.1: The figure shows a flow chart of the technical car inspection example. The gray rectangles describe the
statistics updated on each event. The green boxes represent the simulation events. Decisions are represented by yellow
diamonds.

3 from collections import deque

4 import random

5

6

7 class Vehicle:

8 """

9 This class represent vehicles which arrives to

10 the mechanical workshop

11 """

12

13 def __init__(self, arrival_time=0):

14 self.vehicle_type = random.choice(['motorcycle', 'pickup_truck', 'car'])



8.2. DISCRETE EVENT SIMULATION (DES) 217

15 self.arrival_time = arrival_time

16

17 def __repr__(self):

18 return 'Vehicle type: {0}'.format(self.vehicle_type)

19

20

21 class WorkShop:

22 """

23 This class represents the workshop and its behaviors.

24 """

25

26 def __init__(self, types):

27 self.current_task = None

28 self.review_time = 0

29 self.types = types

30

31 def pass_vehicle(self, vehicle):

32 self.current_task = vehicle

33

34 # Create a random review time

35 current_type_rate = self.types[vehicle.vehicle_type]

36

37 # We add 0.5 to avoid random times equals to zero

38 self.review_time = round(random.expovariate(current_type_rate) + 0.5)

39

40 @property

41 def busy(self):

42 return self.current_task is not None

43

44

45 class Simulation:

46 """

47 This class implements the simulation.

48 Also you can use a function like in the previous case.

49 All variables used in the simulation are initialized.



218 CHAPTER 8. SIMULATION

50 """

51

52 def __init__(self, maximum_time, arrival_rate, types):

53 self.maximum_sim_time = maximum_time

54 self.arrival_rate = arrival_rate

55 self.simulation_time = 0

56 self.next_vehicle_time = 0

57 self.final_service_time = float('Inf')

58 self.waiting_time = 0

59 self.workshop = WorkShop(types)

60 self.waiting_line = deque()

61 self.served_vehicles = 0

62

63 def next_vehicle(self, arrival_rate):

64 # Update the arrival time of the next vehicle. We add 0.5 to avoid

65 # arrivals time equals to zero.

66 self.next_vehicle_time = self.simulation_time + \

67 round(random.expovariate(arrival_rate) + 0.5)

68

69 def run(self):

70 """

71 This method executes the simulation of the

72 workshop and the waiting line

73 """

74 random.seed(10)

75

76 self.next_vehicle(self.arrival_rate)

77

78 # The cycle is executed verified the simulation time is less than

79 # maximum simulation time

80 while self.simulation_time < self.maximum_sim_time:

81

82 # Update simulation time. Note that when the workshop is

83 self.simulation_time = min(self.next_vehicle_time,

84 self.final_service_time) if \



8.2. DISCRETE EVENT SIMULATION (DES) 219

85 self.workshop.busy else self.next_vehicle_time

86

87 print('[SIMULATION] time = {0} min'.format(self.simulation_time))

88

89 # First, review the next event between arrival and the final of a

90 # service

91 if self.simulation_time == self.next_vehicle_time:

92

93 # If a vehicle has arrived we have to add it to the queue,

94 # and to generate the next arrival.

95 self.waiting_line.append(Vehicle(self.simulation_time))

96 self.next_vehicle(self.arrival_rate)

97

98 print('[QUEUE] {0} arrives in: {1} min.'.format(

99 self.waiting_line[-1].vehicle_type,

100 self.simulation_time))

101

102

103 elif self.simulation_time == self.final_service_time:

104

105 print('[W_SHOP] Departure: {0} at {1} min.'.format(

106 self.workshop.current_task.vehicle_type,

107 self.simulation_time))

108

109 self.workshop.current_task = None

110 self.served_vehicles += 1

111

112 # If the workshop is busy, the vehicle has to wait for its turn,

113 # else can be served.

114

115 if not self.workshop.busy and len(self.waiting_line) > 0:

116 # Get the next vehicle in the waiting line

117 next_vehicle = self.waiting_line.popleft()

118

119 # The vehicle begin to be served



220 CHAPTER 8. SIMULATION

120 self.workshop.pass_vehicle(next_vehicle)

121

122 # Update the waiting time, added 0 actually

123 self.waiting_time += self.simulation_time \

124 - self.workshop.current_task.arrival_time

125

126 # The next final time is generated

127 self.final_service_time = self.simulation_time \

128 + self.workshop.review_time

129

130 print('[W_SHOP] {0} enters with a expected service time {'

131 '1} min.'.format(

132 self.workshop.current_task.vehicle_type,

133 self.workshop.review_time))

134

135 print('Statistics:')

136 print('Total service time {0} min.'.format(self.final_service_time))

137 print('Total number of served vehicles: {0}'

138 .format(self.served_vehicles))

139 w_time = self.waiting_time / self.served_vehicles

140 print('Average waiting time {0} min.'.format(round(w_time)))

141

142

143 if __name__ == '__main__':

144 # Set the arrival rate in 5 minutes.

145 arrival_rate_vehicles = 1 / 5

146

147 # Here we define different types of vehicles and the their service time.

148 vehicles = {'motorcycle': 1.0 / 8, 'car': 1.0 / 15,

149 'pickup_truck': 1.0 / 20}

150

151 # The simulation runs until 50 minutes.

152 s = Simulation(70, arrival_rate_vehicles, vehicles)

153 s.run()

[SIMULATION] time = 5 min



8.2. DISCRETE EVENT SIMULATION (DES) 221

[QUEUE] pickup_truck arrives in: 5 min.

[W_SHOP] pickup_truck enters with a expected service time 1 min.

[SIMULATION] time = 6 min

[W_SHOP] Departure: pickup_truck at 6 min.

[SIMULATION] time = 9 min

[QUEUE] pickup_truck arrives in: 9 min.

[W_SHOP] pickup_truck enters with a expected service time 35 min.

[SIMULATION] time = 18 min

[QUEUE] car arrives in: 18 min.

[SIMULATION] time = 27 min

[QUEUE] motorcycle arrives in: 27 min.

[SIMULATION] time = 31 min

[QUEUE] pickup_truck arrives in: 31 min.

[SIMULATION] time = 32 min

[QUEUE] car arrives in: 32 min.

[SIMULATION] time = 44 min

[W_SHOP] Departure: pickup_truck at 44 min.

[W_SHOP] car enters with a expected service time 1 min.

[SIMULATION] time = 45 min

[W_SHOP] Departure: car at 45 min.

[W_SHOP] motorcycle enters with a expected service time 16 min.

[SIMULATION] time = 61 min

[QUEUE] car arrives in: 61 min.

[SIMULATION] time = 61 min

[W_SHOP] Departure: motorcycle at 61 min.

[W_SHOP] pickup_truck enters with a expected service time 11 min.

[SIMULATION] time = 64 min

[QUEUE] car arrives in: 64 min.

[SIMULATION] time = 66 min

[QUEUE] motorcycle arrives in: 66 min.

[SIMULATION] time = 72 min

[QUEUE] car arrives in: 72 min.

Statistics:

Total service time 72 min.

Total number of served vehicles: 4



222 CHAPTER 8. SIMULATION

Average waiting time 18 min.

As we can see, the variation of the simulation time depends exclusively on the events that occur during the simulation.

On each iteration, a vehicle gets into the waiting line, and it randomly generates the arrival time for the next car

(or event). Then, each time a vehicle enters the station, it makes a change in the state of the system. In case the

workshop is not busy the next car is served during a random service time. In the opposite case, while the station is

busy the incoming vehicles accumulate in the queue. When a car leaves the workshop, the simulation time is updated,

generating a new change in the system’s state.

8.3 Hands-On Activities

Activity 8.1

The first branch office of Seguritas Bank has two tellers to attend all clients. Each teller has its queue. Clients arriving

are placed in the shortest line, if both lines are equal, they prefer the teller 1. When a customer finishes his visit and

leaves the cashier, the last client of the other queue checks if he can improve his position by changing between lines,

in that case, he moves to the other line instantly. Assume that all clients arrive in a random time between one and three

minutes. Also, each teller takes a random time between one and ten minutes to serve one client. You must use DES to

simulate this situation during eighty minutes. Do not forget to identify the states variables and the relevant events.

Activity 8.2

The zoo GoodZoo is thinking about creating a new exhibition where they will show the life cycle in a natural

environment as a simulation. Six species are interacting in the environment: Tiger, Elephants, Jaguars, Penguins,

Grass and Cephalopods. Their interactions follow the rules of the food chain. They ask you to create the simulation

with the following events:

• Feeding rules Animals should eat according to their diet. To eat, they have to wait a random time within a

range defined in the variable time_for_food. After an animal selects a prey from the ecosystem, it verifies

if the victim belongs to its diet. After eating, animals get food_energy. In case the prey is not included in

the animal’s diet, it loses half of food_energy and tries to eat in the next simulation time.

• Birth New animals born at a rate of new_animal. Parents lose an amount of energy defined in the variable

giving_birth_energy. After the birth, you should verify that parents have enough energy to stay alive.



8.3. HANDS-ON ACTIVITIES 223

• Deaths An animal can die for three reasons: it has reached its life_expectancy, another animal has eaten

it, and its total energy has got to zero.

The simulation parameters are in the table below. food_frequency is uniformly distributed within a range specified

in the table. The time between births (new_animal) follows an exponential distribution where � is also specified in

the table:

Parameters Tiger Elephant Jaguar Penguin

food
Elephant, Jaguar,

Penguin
Grass

Elephant, Tiger,

Penguin
Cephalopod

food_frequency (20, 30) (8, 15) (35, 55) (4, 15)

food_energy 30 4 20 5

� 1
75

1
200

1
80

1
80

new_animal_energy 15 7 10 10

life_expectancy 300 500 350 90

initial number of

animals
5 8 5 12

The simulation never runs out of Grass and Cephalopods, they do not perform any action, and only Elephants and

penguins eat them. Their quantities will always be:

• Grass: initial number of elephants ⇥3

• Cephalopods: initial number of penguins ⇥5

The maximum simulation time is 1000 units of time, and you must run 1000 of these simulations to calculate and

show the following statistics:



224 CHAPTER 8. SIMULATION

1. Average simulation time.

2. How many times each species becomes extinct.

3. When does a species becomes extinct.

4. How many animals of each species were born.

5. How many animals of each species were eaten.

6. How many animals of each species ran out of energy.

7. How many animals of each species died old.

8. Average lifetime per species.

9. How many individuals of each species were alive at the end of the simulations.

10. How many animals of each species had to wait one turn or more to find their food.

11. Average food-waiting-time per species.

Requirements

• You must use Discrete Events Simulations because an iterative simulation won’t be fast enough to test all the

cases that GoodZoo wants to tests.

• Animals can be part of many events at the same time. The verification order of events it is not important, but

you have to make sure that animals that die at event n cannot exist at n+ 1.

• Animals become part of the simulation the next instant of time after they born. That means that if they are born

at t, they cannot be food for any animal that eats at t, and they cannot die or find food. These actions can be

performed only from t+ 1.

Notes

• Consider making a detailed model; it will get your job much easier



8.3. HANDS-ON ACTIVITIES 225

Here we summarize all what you have to do:

• Simulate feeding

– Randomly find prey. If the chosen animal cannot be eaten (it is not part of the diet) then wait for one

instant.

– Check energy level and simulate death if that corresponds

– Calculate statistics 1, 2, 3, 8, 9, 10, 11 and the deaths-counts per species.

– Compute the next feeding time event

• Simulate births

– Add a new animal to the simulation

– Simulate the energy loss and deaths if corresponds

– Calculate statistic 4

– Compute next birth time event

• Simulate deaths

– Delete an animal from the ecosystem when it has reached its maximum age.

– Calculate statistics 5, 6 and 7


