
Chapter 7

Threading

7.1 Threading

Threads are the smallest program units that an operating system can execute. Programming with threads allows that

several lightweight processes can run simultaneously inside the same program. Threads that are in the same process

share the memory and the state of the variables of the process. This shared use of resources enables threads to run

faster than execute several instances of the same program.

Each process has at least one thread that corresponds to its execution. When a process creates several threads, it

executes these units as parallel processes. In a single-core machine, the parallelism is approximated through thread

scheduling or time slicing. The approximation consists of assigning a limited amount of time to each thread repeatedly.

The alternation between threads simulates parallelism. Although there is no true increase in execution speed, the

program becomes much more responsive. For example, several tasks may execute while a program is waiting for a

user input. Multi-core machines achieve a truly faster execution of the program. Figure 7.1 shows how threads interact

with the main process.

Some examples of where it is useful to implement threads, even on single-core computers, are:

• Interfaces that interact with the user while the machine executes a heavyweight calculation process.

• Delegation of tasks that follow consumer-producer pattern, i.e., jobs which outputs and inputs are related, but

run independently.

• Multi-users applications, in which each thread would be in charge of the requests of each user.

Python 3 handles threads by using the threading library. It includes several methods and objects to manipulate threads.

186 CHAPTER 7. THREADING

Process

Global variables Files Code

Local variables

Code

Thread

Local variables

Code

Thread

Local variables

Code

Thread

Figure 7.1: Diagram of a threading-based application
.

Creating Threads

We can create a new thread using the Thread class from the Threading library. This class requires three arguments:

target to define the function to be executed; name to provide name we want to give to the thread; args to pass the

target arguments. Once created, it may be executed by calling the start() method. In the next example, we

create three threads t1, w1, and w2, that execute different instances of the service and worker functions.

1 # code0.py

2

3 import threading

4 import time

5

6

7 def worker():

8 print("{} starting...".format(threading.currentThread().getName()))

9 # This stops the thread execution for 2 seconds.

10 time.sleep(2)

11 print("{} exiting...".format(threading.currentThread().getName()))

12

13

14 def service():

15 print("{} starting...".format(threading.currentThread().getName()))

16 # This stops the thread execution for 4 seconds.

17 time.sleep(4)

18 print("{} exiting...".format(threading.currentThread().getName()))

7.1. THREADING 187

19

20

21 # We create two named threads

22 t1 = threading.Thread(name='Thread 1', target=service)

23 w1 = threading.Thread(name='Thread 2', target=worker)

24

25 # This uses the default name (Thread-i)

26 w2 = threading.Thread(target=worker)

27

28 # All threads are executed

29 w1.start()

30 w2.start()

31 t1.start()

32

33

34 # The following will be printed before the threads finish executing

35 print('\nThree threads were created\n')

Thread 2 starting...

Thread-1 starting...

Thread 1 starting...

Three threads were created

Thread 2 exiting...

Thread-1 exiting...

Thread 1 exiting...

In the example, we see that once we have initialized the threads, the main program continues with the rest of the

instructions while threads execute their task. The three threads end independently at different times. The main program

waits until all the threads finish correctly.

The following code shows an example of how to pass arguments to the target function through the args attribute.

1 # code1.py

2

3 import threading

188 CHAPTER 7. THREADING

4 import time

5

6

7 def worker(t):

8 print("{} starting...".format(threading.currentThread().getName()))

9

10 # Thread is stopped for t seconds

11 time.sleep(t)

12 print("{} exiting...".format(threading.currentThread().getName()))

13

14

15 # Threads are created using the Thread class, these are associated with the

16 # objective function to be executed by the thread. Function attributes are

17 # given using the 'args' keyword. In this example, we only need to give one

18 # argument. For this reason a one value tuple is given.

19

20 w = threading.Thread(name='Thread 2', target=worker, args=(3,))

21 w.start()

Thread 2 starting...

Thread 2 exiting...

Another way of creating a thread is by inheriting from Thread and redefining the run() method.

1 # code2.py

2

3 import threading

4 import time

5

6

7 class Worker(threading.Thread):

8

9 def __init__(self, t):

10 super().__init__()

11 self.t = t

12

13 def run(self):

7.1. THREADING 189

14 print("{} starting...".format(threading.currentThread().getName()))

15 time.sleep(self.t)

16 print("{} exiting...".format(threading.currentThread().getName()))

17

18

19 class Service(threading.Thread):

20

21 def __init__(self, t):

22 super().__init__()

23 self.t = t

24

25 def run(self):

26 print("{} starting...".format(threading.currentThread().getName()))

27 time.sleep(self.t)

28 print("{} exiting...".format(threading.currentThread().getName()))

29

30

31 # Creating threads

32 t1 = Service(5)

33 w1 = Worker(2)

34 w2 = Worker(4)

35

36 # The created threads are executed

37 t1.start()

38 w1.start()

39 w2.start()

Thread-1 starting...

Thread-2 starting...

Thread-3 starting...

Thread-2 exiting...

Thread-3 exiting...

Thread-1 exiting...

190 CHAPTER 7. THREADING

Join()

In certain situations, we would like to synchronize part of our main program with the outputs of the running threads.

When we need the main program to wait that the execution of a thread or a group of threads finished, we must use the

join(< maximum-waiting-time >) method after the thread starts. In this way, every time we use join()

the main program will be blocked until the referenced threads finish correctly. If we do not define the maximum

waiting time, the main program waits indefinitely until the referenced thread finishes. Figure 7.2 shows the execution

of the program using join().

Main program’s execution Thread 1

Join()

Start the thread 1

Thread 2

Threads finished

Start the thread 2

Main program
sleeping

Join()

Figure 7.2: Diagram shows the program’s flow when we use the join() method. We can see that the main program
will sleep until thread 1 finishes. The thread 2 keeps running independently to the other thread and the main program.

Now let’s see the same previous example but incorporating the join() method after threads start running.

1

2 # Creating threads

3 t1 = Service(5)

4 w1 = Worker(2)

5 w2 = Worker(4)

6

7 # Starting threads

8 t1.start()

9 w1.start()

7.1. THREADING 191

10 w2.start()

11

12 # Here we call the join() method to block the main program.

13 # The other threads keep running independently

14 t0 = time.time()

15 w1.join()

16 print('Main program waits for: {}'.format(time.time() - t0))

Thread 1 starting...

Thread 2 starting...

Thread 3 starting...

Thread 2 exiting...

Main program waits for: 2.000131607055664

Thread 1 exiting...

Thread 3 exiting...

IsAlive()

We can identify if a thread finished its execution using the IsAlive() method or the is_alive attribute, for

example, after using join(). The following example shows the way to use IsAlive() to check if a thread is still

running after a certain amount of time.

1

2 t = Service(4)

3 t.start()

4

5 # The main program will wait 5 seconds after 't' has finished executing

6 # before continuing its execution.

7 t.join(5)

8

9 # This returns true if the thread is not currently executing

10 if not t.isAlive():

11 print('The thread has finished successfully')

12 else:

13 print('The thread is still executing')

Thread-1 starting...

192 CHAPTER 7. THREADING

Thread-1 exiting...

The thread has finished successfully

We can avoid the use of too many prints that help us with the tracking of threads, by using the logging library.

Every time we make a log we have to embed the name of each thread on its log message, as shown in the following

example:

1 # code5.py

2

3 import threading

4 import time

5 import logging

6

7

8 # This sets ups the format in which the messages will be logged on console

9 logging.basicConfig(level=logging.DEBUG, format='[%(levelname)s]'

10 '(%(threadName)-10s) %(message)s')

11

12 class Worker(threading.Thread):

13

14 def __init__(self, t):

15 super().__init__()

16 self.t = t

17

18 def run(self):

19 logging.debug('Starting')

20 time.sleep(self.t)

21 logging.debug('Exiting')

22

23

24 class Service(threading.Thread):

25

26 def __init__(self, t):

27 super().__init__()

28 self.t = t

29

7.1. THREADING 193

30 def run(self):

31 logging.debug('Starting')

32 time.sleep(self.t)

33 logging.debug('Exiting')

34

35

36 # Creating threads

37 t1 = Service(4)

38 w1 = Worker(2)

39 w2 = Worker(2)

40

41 # Starting threads

42 w1.start()

43 w2.start()

44 t1.start()

[DEBUG](Thread-2) Starting

[DEBUG](Thread-3) Starting

[DEBUG](Thread-1) Starting

[DEBUG](Thread-2) Exiting

[DEBUG](Thread-3) Exiting

[DEBUG](Thread-1) Exiting

Daemon Threads

In general, the main program waits for all the threads to finish before ending its execution. Daemon threads let the

main program to kill them off after other threads (and itself) finish. Daemon threads do not prevent the main program

to end. In this way, daemon threads will only run until the main program finishes.

1 # code7.py

2

3 import threading

4 import time

5

6

7 class Worker(threading.Thread):

8

194 CHAPTER 7. THREADING

9 def __init__(self, t):

10 super().__init__()

11 self.t = t

12

13 def run(self):

14 print("{} starting...".format(threading.currentThread().getName()))

15 time.sleep(self.t)

16 print("{} exiting...".format(threading.currentThread().getName()))

17

18

19 class Service(threading.Thread):

20

21 def __init__(self, t):

22 super().__init__()

23 self.t = t

24 # We can set a thread as deamon inside the class definition

25 # setting the daemon attribute as True

26 self.daemon = True

27

28 def run(self):

29 print("{} starting...".format(threading.currentThread().getName()))

30 time.sleep(self.t)

31 print("{} exiting...".format(threading.currentThread().getName()))

32

33

34 # Creating threads

35 t1 = Service(5)

36 w1 = Worker(2)

37

38 # Setting the working thread as daemon

39 # We can use this same method when we define a function as target

40 # of a thread.

41 w1.setDaemon(True)

42

43 # Executing threads

7.1. THREADING 195

44 w1.start()

45 t1.start()

Thread 2 starting...

Thread 1 starting...

The previous example explains the use of daemon threads. The console output shows how threads are interrupted

abruptly after the main program ends its execution. We can compare this output with the output of the next example,

configuring threads as daemon (removing lines 24 and 39):

Thread-2 starting...

Thread-1 starting...

Thread-2 exiting...

Thread-1 exiting...

Note that threads complete the execution and the program did not close until both threads finished. If for any reason,

we require waiting for a daemon thread during an amount of time, we can specify that amount (in seconds) in the

join() method:

1 # code9.py

2

3 import threading

4 import logging

5 import time

6

7 logging.basicConfig(level=logging.DEBUG,format='(%(threadName)-10s) '

8 '%(message)s')

9

10 class DaemonThread(threading.Thread):

11

12 def __init__(self, t):

13 super().__init__()

14 self.t = t

15 self.daemon = True

16 self.name = 'daemon'

17

18 def run(self):

196 CHAPTER 7. THREADING

19 logging.debug('Starting')

20 time.sleep(self.t)

21 logging.debug('Exiting')

22

23 class NonDaemonThread(threading.Thread):

24

25 def __init__(self, t):

26 super().__init__()

27 self.t = t

28 self.name = 'non-daemon'

29

30 def run(self):

31 logging.debug('Starting')

32 time.sleep(self.t)

33 logging.debug('Exiting')

34

35 # Creating threads

36 d = DaemonThread(3)

37 t = NonDaemonThread(1)

38

39 # Executing threads

40 d.start()

41 t.start()

42

43 # Waiting thread d for 1 seconds

44 d.join(2)

45 print('is d alive?: {}'.format(d.isAlive()))

(daemon) Starting

(non-daemon) Starting

(non-daemon) Exiting

is d alive?: True

7.2. SYNCHRONIZATION 197

Timers

The class Timer is a subclass of the class Thread and allows us to execute a process or an action after a certain

amount of time has passed. Timer requires as basic parameters the time in seconds after which the thread starts

running, the name of the process to execute and the entry arguments for the process. The cancel() method allows

us, if required, to cancel the execution of the timer before its begins.

1 # code10.py

2

3 import threading

4

5 def delayed_message(msg):

6 print("Message:", msg)

7

8 t1 = threading.Timer(10.0, delayed_message, args=("This is a thread t1!",))

9 t2 = threading.Timer(5.0, delayed_message, args=('This is a thread t2!',))

10 t3 = threading.Timer(15.0, delayed_message, args=('This is a thread t3!',))

11

12 # This thread will start after 10 seconds

13 t1.start()

14

15 # This thread will start after 5 seconds

16 t2.start()

17

18 # Here we cancel thread t1

19 t1.cancel()

20

21 # This thread will start after 15 seconds

22 t3.start()

Message: This is a thread t2!

Message: This is a thread t3!

7.2 Synchronization

Threads run in a non-deterministic way. Therefore, there are some situations in which more than one thread must

share the access to certain resources, such as files and memory. During this process, only one thread have access to the

198 CHAPTER 7. THREADING

resource, and the remaining threads must wait for it. When there is multiple concurrence to a resource it is possible to

control the access through synchronization mechanisms among the threads.

Locks

Locks allow us to synchronize the access to shared resources between two or more threads. The Threading library

provides us with the Lock class which allows the synchronization. A lock has two states: locked and unlocked.

The default state is unlocked. When a given thread ti attempts to execute, first it tries to acquire the lock (with

the acquire() method). If another thread tj takes the lock, ti must wait for tj to finish and release it (with the

release() method) to have the chance to acquire the lock. Once ti acquires the lock, it can start executing. Figure

7.3 shows a general scheme of synchronization between threads using locks.

1 # code11.py

2

3 import threading

4

5

6 # This class models a thread that blocks to a file

7 class MyThread(threading.Thread):

8

9 lock = threading.Lock()

10

11 def __init__(self, i, file):

12 super().__init__()

13 self.i = i

14 self.file = file

15

16 # This method is the one executed when the start() method is called.

17 def run(self):

18

19 # Blocks other threads from entering the next block

20 MyThread.lock.acquire()

21 try:

22 self.file.write('This line was written by thread #{}\n'.format(self.i))

23 finally:

24 # Releases the resource

7.2. SYNCHRONIZATION 199

25 MyThread.lock.release()

26

27

28 if __name__ == '__main__':

29 n_threads = 15

30 threads = []

31

32 # We create a file to write the output.

33 with open('out.txt', 'w') as file:

34

35 # All writing threads are created at once

36 for i in range(n_threads):

37

38 my_thread = MyThread(i, file)

39

40 # The thread is started, which executes the run() method.

41 my_thread.start()

42 threads.append(my_thread)

This line was written by thread #0

This line was written by thread #1

This line was written by thread #2

This line was written by thread #3

This line was written by thread #4

This line was written by thread #5

This line was written by thread #6

This line was written by thread #7

This line was written by thread #8

This line was written by thread #9

This line was written by thread #10

This line was written by thread #11

This line was written by thread #12

This line was written by thread #13

This line was written by thread #14

Fortunately in Python locks can also work inside a context manager through the with sentence. In this case, is the

200 CHAPTER 7. THREADING

Thread-1

Locked?

Non-blocking instructions

Blocking instructions

Lock.release()

Lock.acquire()

Yes

No

Thread-2

Locked?

Non-blocking instructions

Blocking instructions

Lock.release()

Lock.acquire()

Yes

No

Thread-i

Locked?

Non-blocking instructions

Blocking instructions

Lock.release()

Lock.acquire()

Yes

No

…

Figure 7.3: This image shows a general example where a set of i threads are running. Whenever a thread acquires the
lock, the rest of the threads must wait to be able to execute. After the thread releases the lock, the other threads can
acquire it and run their (blocking) instructions.

same with that is in charge of calling the acquire() and release() methods. For example, the locks used in

the run method from the previous example can be implemented as shown:

1 def run(self):

2 with MyThread.lock:

3 self.file.write(

4 'This line was written by thread #{}\n'.format(self.i))

A common problem in concurrent programming is the Producer-Consumer pattern. This problem arises when two or

more threads, known as producers and consumers, access to the same storage space or buffer. Under this scheme,

producers put items in the buffer and consumers pull items out of the buffer. This model allows the communication

between different threads. In general the buffer shared in this model is implemented through a synchronized queue or

secure queue.

For example, let’s assume that we can separate a program that processes a text file with numbers in two independent

threads. The first thread is in charge of reading the file and appending the values to a queue. The second thread stores

into another file the sum of the tuples of numbers previously added into the queue. We communicate both threads

through a synchronized queue implemented as shown next:

7.2. SYNCHRONIZATION 201

1 # code13.py

2

3 import collections

4 import threading

5

6 class MyDeque(collections.deque):

7

8 # We inherit from a normal collections module Deque and

9 # we add the locking mechanisms to ensure thread

10 # synchronization

11

12 def __init__(self):

13 super().__init__()

14 # A lock is created for this queue

15 self.lock = threading.Lock()

16

17 def append(self, element):

18

19 # The lock is used within a context manager

20 with self.lock:

21 super().append(element)

22 print('[ADD] queue now has {} elements'.format(len(self)))

23

24 def popleft(self):

25 with self.lock:

26 print('[REMOVE] queue now has {} elements'.format(len(self)))

27 return super().popleft()

Now let’s see the rest of the implementation of the producer and the consumer. As a recommendation, we encourage

the read to try the examples directly in a terminal or using a IDE such as PyCharm.

1 # code14.py

2

3 import time

4 import threading

5

202 CHAPTER 7. THREADING

6

7 class Producer(threading.Thread):

8 # This thread is implemented as a class

9

10 def __init__(self, queue):

11 super().__init__()

12 self.queue = queue

13

14 def run(self):

15 # We open the file using a context manager. We explain this in details

16 # in Chapter 10.

17 with open('raw_numbers.txt') as file:

18 for line in file:

19 values = tuple(map(int, line.strip().split(',')))

20 self.queue.append(values)

21

22

23 def consumer(queue):

24 # This thread is implemented as a function

25

26 with open('processed_numbers.txt', 'w') as file:

27 while len(queue) > 0:

28 numbers = queue.pop()

29 file.write('{}\n'.format(sum(numbers)))

30

31 # Simulates that the consumer is slower than the producer

32 time.sleep(0.001)

33

34

35 if __name__ == '__main__':

36

37 queue = MyDeque()

38

39 p = Producer(queue)

40 p.start()

7.2. SYNCHRONIZATION 203

41

42 c = threading.Thread(target=consumer, args=(queue,))

43 c.start()

[ADD] queue now has 1 elements

[ADD] queue now has 2 elements

[ADD] queue now has 3 elements

[ADD] queue now has 4 elements

[ADD] queue now has 5 elements

Deadlock

In the context of multithreading-based applications, there is an innocent but dangerous situation in programs that use

locks. This case is commonly called deadlock. A deadlock occurs when two or more threads are stuck waiting for

each other to release a resource. For example, let FirstProcess be a thread that acquires a lock a and requests for

a lock b so it can release the lock a. Let SecondProcess be another thread that already acquired the lock b and

is waiting for the lock a before it releases the lock b. We note the deadlock because of our program will be frozen

without getting a runtime error or crash. The next code example shows a template of a deadlock according to with the

situation described:

1 # code15.py

2

3 import threading

4

5

6 class FirstProcess(threading.Thread):

7

8 def __init__(self, lock_a, lock_b):

9 self.lock_a = lock_a

10 self.lock_b = lock_b

11

12 def run(self):

13 with self.lock_a:

14 # Acquire the first lock

15

16 with self.lock_b:

204 CHAPTER 7. THREADING

17 # Acquire the second lock for another concurrent task

18

19

20 class SecondProcess(threading.Thread):

21

22 def __init__(self, lock_a, lock_b):

23 self.lock_a = lock_a

24 self.lock_b = lock_b

25

26 def run(self):

27 with self.lock_b:

28 # Acquire the first lock

29 # Notice that this thread require the lock_b, that

30 # could be taken fot other thread previously

31

32 with self.lock_a:

33 # Acquire the second lock for another concurrent task

34

35

36 lock_a = threading.Lock()

37 lock_b = threading.Lock()

38

39 t1 = FirstProcess(lock_a, lock_b)

40 t2 = SecondProcess(lock_a, lock_b)

41 t1.start()

42 t2.start()

We can decrease the risk of a deadlock by restricting the number of locks that a threads can acquire at a time.

Queue

Fortunately, Python has an optimized library for secure queues management in producer-consumer models. The queue

library has a implemented queue that safely manages multiples concurrences. It is different to the queue implemented

in collections library used in data structures because that one does not have locks for synchronization.

The main queue methods in the queue library are:

7.2. SYNCHRONIZATION 205

• put(): Adds an item to the queue (push)

• get(): Removes and returns an item from the queue (pop)

• task_done(): Requires to be called each time an item has been processed

• join(): Blocks the queue until all the items have been processed

Recall the text file processing example shown before. The implementation using the queue library is as follows:

1 # code16.py

2

3 import threading

4 import time

5 import queue

6

7

8 class Producer(threading.Thread):

9

10 def __init__(self, que):

11 super().__init__()

12 self.que = que

13

14 def run(self):

15 with open('raw_numbers.txt') as file:

16 for line in file:

17 values = tuple([int(l) for l in line.strip().split(',')])

18 self.que.put(values)

19 print('[PRODUCER] The queue has {} elements.'.format(\

20 self.que.qsize()))

21

22 # Simulates a slower process

23 time.sleep(0.001)

24

25

26 def consumer(que):

27 with open('processed_numbers.txt', 'w') as file:

28 while True:

206 CHAPTER 7. THREADING

29

30 # A try/except clause is used in order to stop

31 # the consumer once there is no elements left in the

32 # queue. If not for this, the consumer would be executing

33 # for ever

34

35 try:

36

37 # If no elements are left in the queue, an Empty

38 # exception is raised

39 numbers = que.get(False)

40 except queue.Empty:

41 break

42 else:

43 file.write('{}\n'.format(sum(numbers)))

44 que.task_done()

45

46 # qsize() returns the queue size

47 print('[CONSUMER] The queue now has {} elements.'.format(\

48 que.qsize()))

49

50 # Simulates a complex process. If the consumer was faster

51 # than the producer, the threads would end abruptly

52 time.sleep(0.005)

53

54

55 if __name__ == '__main__':

56

57 q = queue.Queue()

58

59 # a producer is created and executed

60 p = Producer(q)

61 p.start()

62

63 # a consumer thread is created and executed with the same queue

7.3. HANDS-ON ACTIVITIES 207

64 c = threading.Thread(target=consumer, args=(q,))

65 c.start()

[PRODUCER] The queue has 1 elements.

[CONSUMER] The queue now has 0 elements.

[PRODUCER] The queue has 1 elements.

[PRODUCER] The queue has 2 elements.

[PRODUCER] The queue has 3 elements.

[PRODUCER] The queue has 4 elements.

[CONSUMER] The queue now has 3 elements.

[CONSUMER] The queue now has 2 elements.

[CONSUMER] The queue now has 1 elements.

[CONSUMER] The queue now has 0 elements.

7.3 Hands-On Activities

Activity 7.1

ALERT! Godzilla has arrived at Santiago! Soldiers need to simulate a battle against Godzilla. The simulation will

contribute deciding whether it is better to run away or to fight him. With this purpose, Soldiers have given us a report

with the specifications that we have to accomplish. These specifications are:

• There is just one Godzilla and several soldiers.

• Each soldier has an attack speed, remaining life (HP), and strength of attack (damage).

• Godzilla attacks every eight seconds, affecting all soldiers by decreasing their HP in three units.

• Each time a soldier attacks Godzilla, it attacks back decreasing one-fourth of the soldiers’ attack to his HP.

• The soldiers’ attack speed is random between 4 and 19 seconds.

• You must create one new soldier every x seconds, where x has to be previously defined by you.

Activity 7.2

Congratulations! Thanks to the previous simulation (7.3), the Army has realized of its superiority against Godzilla.

Santiago is safe again, or that is what we believe. The truth is that the epic battle has been nothing but a simulation

208 CHAPTER 7. THREADING

made by Godzilla to decide if he attacks Santiago or not. Now Santiago will be faced by Mega-Godzilla (Godzilla

in its ultimate form), with all of the powers he has not shown before. The task is to simulate the battle between

Mega-Godzilla and the Army so it can be written in history books. The simulation must:

• Contain several soldiers and one Mega-Godzilla.

• Each soldier has an attack speed, remaining life (HP), and strength of attack (damage).

• Mega-Godzilla attacks every N seconds, where N is a random number between 3 and 6. N has to be reset after

each action.

• Mega-Godzilla attacks in the following ways:

– Normal attack: Mega-Godzilla stomps affecting all soldiers. This attack causes a three units damage to

each soldier.

– Scaly Skin: Each time a soldier attacks Mega-Godzilla, it attacks back decreasing one-fourth of the

soldiers’ attack to his HP.

– Ultimate Mega-Godzilla Super Attack: Mega-Godzilla screams causing a six units damage to every soldier.

Also, the scream stuns all the soldiers for 10 seconds. During this period, soldiers can not perform any

action.

• Soldiers’ attack speed is random between 4 and 19 seconds.

• Soldiers’ attack lasts a random number between 1 and 3 seconds.

• Only one soldier can attack Mega-Godzilla at a time.

