
Chapter 5

Exceptions

Exceptions are execution errors or situations where the program cannot obtain a valid or expected value. In most

cases, they are indicating that something is going wrong with the execution of the program. For example, this situation

happens when the input data type does not match with the expected by our program, or any other runtime errors. These

conditions produce the unexpected termination of the execution. Python represents exceptions as objects.

5.1 Exception Types

In Python, all exceptions inherit from the BaseException class. Below, we see examples of the most common

Python exceptions.

1 # 0.py

2

3 # SyntaxError exception: print is valid Python2.x, but incorrect in Python3.x

4 print 'Hello World'

File "0.py", line 4

print ’Hello World’

^

SyntaxError: Missing parentheses in call to ’print’

1 # 1.py

2

3 # In this Python version print is a function

4 # and requires params inside the brackets

148 CHAPTER 5. EXCEPTIONS

5 print('Hello World')

Hello World

1 # 2.py

2

3 # NameError exception: for data input in Python2.x, but incorrect in

4 # Python3.x

5 a = raw_input('Enter a number: ')

6 print(a)

Traceback (most recent call last):

File "2.py", line 4, in <module>

a = raw_input(’Enter a number: ’)

NameError: name ’raw_input’ is not defined

1 # 3.py

2

3 # ZeroDivisionError exception: division by zero

4 x = 5.0 / 0

Traceback (most recent call last):

File "4.py", line 5, in <module>

x = 5.0 / 0

ZeroDivisionError: float division by zero

1 # 4.py

2

3 # IndexError exception: index out of range. A typical error that ocurrs

4 # when we try to access to an element of a list with an index that exceeds

5 # its size.

6 # Lists in Python have indexes from 0 to len(list_)-1

7

8 age = [36, 23, 12]

9 print(age[3])

Traceback (most recent call last):

File "5.py", line 9, in <module>

5.1. EXCEPTION TYPES 149

print(age[3])

IndexError: list index out of range

1 # 5.py

2

3 # TypeError exception: erroneus data type handling.

4 # A typical example is trying to concatenate a list

5 # with a variable that is not a list

6

7 age = [36, 23, 12]

8 print(age + 2)

Traceback (most recent call last):

File "6.py", line 8, in <module>

print(age + 2)

TypeError: can only concatenate list (not "int") to list

1 # 6.py

2

3 # Correct data type handling.

4 # To concatenate a list to another object, the latter has to be a list too

5

6 age = [36, 23, 12]

7 print(age + [2])

[36, 23, 12, 2]

1 # 7.py

2

3 # AttributeError exception: incorrect use of methods of a class or data type.

4 # In this example the class Car has only defined the method move, but the

5 # program tries execute the method stop() that doesn't exist

6

7

8 class Car:

9 def __init__(self, doors=4):

10 self.doors = doors

150 CHAPTER 5. EXCEPTIONS

11

12 def mover(self):

13 print('avanzando')

14

15 chevi = Car()

16 chevi.stop()

Traceback (most recent call last):

File "8.py", line 16, in <module>

chevi.stop()

AttributeError: ’Car’ object has no attribute ’stop’

1 # 8.py

2

3 # KeyError exception: incorrect use of key in dictionaries.

4 # In this example the program ask for an item associated with a key that

5 # doesn't appears in the dictionary

6

7 book = {'author': 'Bob Doe', 'pages': 'a lot'}

8 print(book['editorial'])

Traceback (most recent call last):

File "9.py", line 8, in <module>

print(book[’editorial’])

KeyError: ’editorial’

5.2 Raising exceptions

We trigger exceptions in a program, or within a class or function using the statement raise. We can also add

optionally a descriptive message to be shown when the exception is raised:

1 # 9.py

2

3

4 class Operations:

5

6 @staticmethod

5.2. RAISING EXCEPTIONS 151

7 def divide(num, den):

8 if den == 0:

9 # Here we generate the exception and we include

10 # information about its meaning.

11 raise ZeroDivisionError('Denominator is 0')

12 return float(num) / float(den)

13

14

15 print(Operations().divide(3, 4))

16 print(Operations().divide(3, 0))

0.75

Traceback (most recent call last):

File "10.py", line 16, in <module>

print(Operations().divide(3, 0))

File "10.py", line 11, in divide

raise ZeroDivisionError(’Denominator is 0’)

ZeroDivisionError: Denominator is 0

When an exception occurs inside a function contained in another one, this exception interrupts all the functions that

include it and the main program. Besides the existent exceptions, it is possible to raise exceptions with customized

messages:

1 # 10.py

2

3

4 class Circle:

5

6 def __init__(self, center):

7 if not isinstance(center, tuple):

8 raise Exception('Center has to be a tuple')

9 print('This line is not printed')

10

11 self.center = center

12

13 def __repr__(self):

14 return 'The center is {0}'.format(self.center)

152 CHAPTER 5. EXCEPTIONS

15

16

17 c1 = Circle((2, 3))

18 print(c1)

19

20 c2 = Circle([2, 3])

21 print(c2)

The center is (2, 3)

Traceback (most recent call last):

File "11.py", line 20, in <module>

c2 = Circle([2, 3])

File "11.py", line 8, in __init__

raise Exception(’Center has to be a tuple’)

Exception: Center has to be a tuple

5.3 Exception handling

Every time an exception occurs, it is possible to handle it with the statements try and except. When a block of

instructions defined inside the try statement triggers an exception, and the except processed it using the instructions

inside of it. Afterward, the program continues its execution normally and does not stop or crash. The block of

instructions inside the except defines how the program behaves depending on the exception type. In the following

example, we observe that the program does not crash, even though occurs an invalid operation inside the try block:

1 # 11.py

2

3

4 class Operations:

5

6 @staticmethod

7 def divide(num, den):

8 # This method will raise an exception when denominator be 0

9 return float(num) / float(den)

10

11

12 try:

5.3. EXCEPTION HANDLING 153

13 # Here we manage the exceptions during the runtime of the function.

14 # The first case will return an output and the second case will yield and

15 # error beacuse denominator is 0. The output in this wont be printed.

16

17 print('First case: {}'.format(Operations().divide(4, 5)))

18 print('Second case: {}'.format(Operations().divide(4, 0)))

19

20 except ZeroDivisionError as err:

21 print('Error: {}'.format(err))

First case: 0.8

Error: float division by zero

We can handle separately different types of exceptions by adding more specific exception blocks (ex:

ZeroDivisionError, TypeError, KeyError, etc.), each one catches the exceptions according to the

exception type that occurred:

1 # 12.py

2

3

4 class Operations:

5

6 @staticmethod

7 def divide(num, den):

8 # Check if the input parameters are a valid type

9 if not (isinstance(num, int) and isinstance(den, int)):

10 raise TypeError('Invalid input type.')

11

12 # Check the numerator and denominator are greater than 0

13 if num < 0 or den < 0:

14 # The message inside brackets will show once the

15 # exception has been handled.

16 raise Exception('Negative values. Check the input parameters')

17

18 return float(num) / float(den)

19

20

154 CHAPTER 5. EXCEPTIONS

21 # In this code section we manage the runtime exception using try and except

22 # sentences.

23

24 # First example, using float values

25 try:

26 print('First case: {}'.format(Operations().divide(4.5, 3)))

27

28 except (ZeroDivisionError, TypeError) as err:

29 # This block works with the already defined exception types

30 print('Error: {}'.format(err))

31

32 except Exception as err:

33 # This block only handles type Exception exceptions

34 print('Error: {}'.format(err))

35

36

37 # Second example, using negative values

38 try:

39 print('Second case: {}'.format(Operations().divide(-5, 3)))

40

41 except (ZeroDivisionError, TypeError) as err:

42 # This block works with the already defined exception types

43 print('Error: {}'.format(err))

44

45 except Exception as err:

46 # This block only handles type Exception exceptions

47 print('Error: {}'.format(err))

Error: Invalid input type.

Error: Negative values. Check the input parameters

If we do not use any particular exception name after the Except statement, it caught any exception triggered in the

try. The try and except blocks can be complemented by the else and finally statements. The else block

execute the instructions inside of it only in case no exception happened. The finally statement always executes the

instructions defined in its block. This statement is commonly used to trigger cleaning actions, such as closing a file,

database connections, etc. The following code shows an example:

5.3. EXCEPTION HANDLING 155

1 # 13.py

2

3

4 class Operations:

5

6 @staticmethod

7 def divide(num, den):

8 if not (isinstance(num, int) and isinstance(den, int)):

9 raise TypeError('Invalid input type')

10

11 if num < 0 or den < 0:

12 raise Exception('Negative input values')

13

14 return float(num) / float(den)

15

16

17 # The complete Try/Except structure

18

19 try:

20 # Check if we can excecute this operation

21 resultado = Operations.divide(10, 0)

22

23 except (ZeroDivisionError, TypeError):

24 # This block works with the already defined exception types

25 print('Check the input values. '

26 'They aren\'t ints or the denominator is 0')

27

28 except Exception:

29 # This block only handles type Exception exceptions

30 print('All given values are negative')

31

32 else:

33 # When we do no have errors, the program excecute this lines

34 print('Everything is ok. They were no errors')

35

156 CHAPTER 5. EXCEPTIONS

36 finally:

37 print('Rebember to ALWAYS use this structure to handle your runtime'

38 'errors')

Check the input values. They aren’t ints or the denominator is 0

Rebember to ALWAYS use this structure to handle your runtimeerrors

5.4 Creating customized exceptions

In Python, there are three main types of exceptions: SystemExit, KeyboardInterrupt and Exception. All

of the them inherits from BaseException. All the other exceptions suchs as the exceptions generated by errors

iherits from the Exceptions class, as is shown in Figure 5.1:

BaseException

SystemExit

KeyboardInterrupt

Exception

User customized exceptions

SyntaxError

NameError

ZeroDivisionError

IndexError

TypeError

AttributeError

Figure 5.1: Diagram of exceptions hierarchy. All exceptions descended from a the general exception
BaseException. We can create our new exceptions inheriting from the base class Exception.

The previous diagram explains the reason why using only the Exception statement without specifying exceptions

catches any error. All of them are subclasses of Exception.

1 # 14.py

2

3

4 class Operations:

5

6 @staticmethod

7 def divide(num, den):

8 if not (isinstance(num, int) and isinstance(den, int)):

9 raise TypeError('Invalid input type')

5.4. CREATING CUSTOMIZED EXCEPTIONS 157

10

11 if num < 0 or den < 0:

12 raise Exception('Negative input values')

13

14 return float(num) / float(den)

15

16

17 # In this section we handle the excetions

18 try:

19 print(Operations().divide(4, 0))

20

21 except Exception as err:

22 # This block works for all exception types.

23 print('Error: {}'.format(err))

24 print('Check the input')

Error: float division by zero

Check the input

To create customized exceptions, we need that the custom exception inherits from the Exception class. The

following code shows an example:

1 # 15.py

2

3

4 class Exception1(Exception):

5 pass

6

7

8 class Exception2(Exception):

9

10 def __init__(self, a, b):

11 super().__init__("One of the values {0} or {1} is not integer"

12 .format(a, b))

13

14

15 class Operations:

158 CHAPTER 5. EXCEPTIONS

16

17 @staticmethod

18 def divide(num, den):

19 # In this example, we re-define exceptions that we used in the last

20 # examples.

21

22 if not (isinstance(num, int) and isinstance(den, int)):

23 raise Exception2(num, den)

24

25 if num < 0 or den < 0:

26 raise Exception1('Negative values\n')

27

28 return float(num) / float(den)

29

30

31 # This case raise the exception 1

32 try:

33 print(Operations().divide(4, -3))

34

35 except Exception1 as err:

36 # This block works for type one exception

37 print('Error: {}'.format(err))

38

39 except Excepcion2 as err:

40 # This block works for type two exception

41 print('Error: {}'.format(err))

42

43

44 # This case raise the exception 2

45 try:

46 print(Operations().divide(4.4, -3))

47

48 except Exception1 as err:

49 # This block works for type one exception

50 print('Error: {}'.format(err))

5.4. CREATING CUSTOMIZED EXCEPTIONS 159

51

52 except Exception2 as err:

53 # This block works for type two exception

54 print('Error: {}'.format(err))

Error: Negative values

Error: One of the values 4.4 or -3 is not integer

Here we show another example:

1 # 16.py

2

3 class TransactionError(Exception):

4 def __init__(self, funds, expenses):

5 super().__init__("The money on your wallet is not enough to pay ${}"

6 .format(expenses))

7 self.funds = funds

8 self.expenses = expenses

9

10 def excess(self):

11 return self.funds - self.expenses

12

13

14 class Wallet:

15 def __init__(self, money):

16 self.funds = money

17

18 def pay(self, expenses):

19 if self.funds - expenses < 0:

20 raise TransactionError(self.funds, expenses)

21 self.funds -= expenses

22

23 if __name__ == '__main__':

24 b = Wallet(1000)

25

26 try:

160 CHAPTER 5. EXCEPTIONS

27 b.pay(1500)

28 except TransactionError as err:

29 print('Error: {}'.format(err))

30 print("There is an excess of expenses of ${}".format(err.excess()))

Error: The money on your wallet is not enough to pay $1500

There is an excess of expenses of $-500

Notes

Handling exceptions is another way of controlling the program’s flow, similar to if-else sentences. It is recom-

mended to use exceptions to control the errors in the program. We always can to create a sort of “error codes” for

managing the returned values or results in different kind of operations. However, this solution makes the program

and other modules hard to maintain. The number of error codes may grow at the same time the number of possible

outputs we need to control. It makes our program impossible to be understood by any other programmers. A clearer

example of the reason we need to handle exceptions is that in general, our program has to notify other applications

that a particular error occurred. This kind of notifications would not be possible with the use of error codes. It is also

critical that our code does not unexpectedly crash because during a crash the interpreter usually exposes in the output

part of code that triggers the error. We have to avoid this situation if we correctly handle the exceptions.

5.5 Hands-On Activities

Activity 5

The Physics Club of your University The Absolute Zeros decided to program a calculator, whose main feature is that it

handles letters and numbers as input. The person who was working on the project decided to change to the chemistry

club Cooler than Absolute Zero and left the calculator unfinished. The calculator works well for some operations, but

many times it triggers errors, and no one has been able to fix it. The president of the Physics Club has asked you to fix

the code, such that it does not crash whenever is possible, handling the errors produced by user’s input.

Consider that the president sent you a list of tested operations that work correctly: tested_operations; and a list

with operations that do not work: statements_for_testing. We provide the file AC05_0_provided_code.py

with the code. You cannot modify the code from line 87. Your job is to write the code to handle the exceptions and

obtain the following output:

[ERROR] KeyError

5.5. HANDS-ON ACTIVITIES 161

Letter ‘g’ won’t be aggregated. It already exist in memory.

[ERROR] ZeroDivisionError

1 divided 0 is equal to infinite

[ERROR] KeyError

‘a’ doesn’t have any assigned values .It must be added before using it.

The operation a+2 wasn’t executed

9.81 plus 0 is equal to 9.81

88 divided by 2 is equal to 44.0

44.0 plus 0 is equal to 44.0

[ERROR] StopIteration

There’s one missing operator in 88/2+0+

[ERROR] ValueError

‘1=2’ cannot be parsed to float

[ERROR] The syntax ’1=2’ is incorrect. Read the manual for more information.

8.953 plus 1 is equal to 9.953

