
Chapter 4

Meta Classes

Python classes are also objects, with the particularity that these can create other objects (their instances). Since classes

are objects, we can assign them to variables, copy them, add attributes, pass them as parameters to a function, etc.

1 class ObjectCreator:

2 pass

3

4 print(ObjectCreator)

5

6

7 def visualize(o):

8 print(o)

9

10 visualize(ObjectCreator)

<class ’ObjectCreator’>

<class ’ObjectCreator’>

1 # Here we check if ObjectCreator has the attribute weight

2 print(hasattr(ObjectCreator, 'weight'))

False

1 # Here we are directly adding the weight attribute

2 ObjectCreator.weight = 80

3 print(hasattr(ObjectCreator, 'weight'))

4 print(ObjectCreator.weight)

136 CHAPTER 4. META CLASSES

True

80

1 # Assigning the class to a new variable

2 # Note that both variables reference the same object

3 ObjectCreatorMirror = ObjectCreator

4 print(id(ObjectCreatorMirror))

5 print(id(ObjectCreator))

6 print(ObjectCreatorMirror.weight)

140595089871608

140595089871608

80

Note that any changes we make to a class affect all of the class objects, including those that were already instantiated:

1 class Example:

2 pass

3

4 x = Example()

5 print(hasattr(x, 'attr'))

6 Example.attr = 33

7 y = Example()

8 print(y.attr)

9 Example.attr2 = 54

10 print(y.attr2)

11 Example.method = lambda self: "Calling Method..."

12 print(y.method())

13 print(hasattr(x, 'attr'))

False

33

54

Calling Method...

True

4.1. CREATING CLASSES DYNAMICALLY 137

4.1 Creating classes dynamically

Since classes are objects, we can create them at runtime just like any other object. For example, you can create a class

within a function using the class statement:

1 def create_class(name):

2 if name == 'MyClass':

3 class MyClass: # Usual way of creating a class

4 pass

5 return MyClass

6 else:

7 class OtherClass:

8 pass

9 return OtherClass

10

11 c1 = create_class('MyClass')

12 print(c1())

<MyClass object at 0x1078ff710>

We could also create a class in runtime using Python’s exec command, which runs the code written in the input string.

(You should be extremely careful with this function, and never execute a user given code, as it may contain malicious

instructions).

1 name = "MyClass"

2 my_class = """

3 class %s():

4 def __init__(self, a):

5 self.at = a

6 """ % (name)

7 exec(my_class)

8 e = MyClass(8)

9 print(e.at)

8

That’s pretty much, more of the same we have done so far. Now let’s do it dynamically. First, let’s remember that the

type function returns an object’s type:

138 CHAPTER 4. META CLASSES

1 print(type(1))

2 print(type("1"))

3 print(type(c1))

4 print(type(c1()))

5 # type is also an object of type 'type', it is an instance of itself

6 print(type(type))

<class ’int’>

<class ’str’>

<class ’type’>

<class ’MyClass’>

<class ’type’>

type can also create objects in runtime by taking a class descriptors as parameters. In other words, if we call type

with only one argument, we are asking the type of the argument, but if you call it with three arguments, we are

asking for the creation of a class. The first argument is the class name; the second argument is a tuple that contains

all the parent classes. Finally, the third argument is a dictionary that contains all the class’s attributes and methods:

{attr_name:attr_value} or {method_name:function}. Below we show an example:

1 name = "MyClass"

2 c2 = type(name, (), {})

1 # We can do the same with a function

2 def create_class(name):

3 c = type(name, (), {})

4 return c

5

6 # Here we create the class MyClass2

7 create_class("MyClass2")()

Obviously we can also add attributes:

1 def create_class(name, attr_name, attr_value):

2 return type(name, (), {attr_name: attr_value})

3

4 Body = create_class("Body", "weight", 100)

5 bd = Body() # using it as a normal class to create instances.

6 print(bd.weight)

4.1. CREATING CLASSES DYNAMICALLY 139

100

We can also add functions to the class dictionary, to create the methods of the class:

1 # a function that will be used as a method in the class we shall create

2 def lose_weight(self, x):

3 self.weight -= x

4

5 Body = type("Body", (), {"weight": 100, "lose_weight": lose_weight})

6 bd = Body()

7

8 print(bd.weight)

9 bd.lose_weight(10)

10 print(bd.weight)

100

90

To inherit from the Body class:

1 class MyBody(Body):

2 pass

we should write:

1 MyBody = type("MyBody", (Body,), {})

2 print(MyBody)

3 print(MyBody.weight)

<class ’MyBody’>

100

If we want to add methods to MyBody:

1 def see_weight(self):

2 print(self.weight)

3

4 MyBody = type("MyBody", (Body,), {"see_weight": see_weight})

5 print(hasattr(Body, "see_weight"))

6 print(hasattr(MyBody, "see_weight"))

140 CHAPTER 4. META CLASSES

7 print(getattr(MyBody, "see_weight"))

8 print(getattr(MyBody(), "see_weight"))

9

10 m1 = MyBody()

11 m1.see_weight()

False

True

<function see_weight at 0x1078e02f0>

<bound method MyBody.see_weight of <MyBody object at 0x1078ffc50>>

100

4.2 Metaclasses

Metaclasses are Python’s class creators; they are the classes of classes. type is Python’s metaclass by default. It is

written in lower_case to maintain consistency with str, the class that creates string objects, and with int, the class

that creates objects of integer type. type is simply the class that creates objects of type class.

In Python all objects are created from a class:

1 height = 180

2 print(height.__class__)

3 name = "Carl"

4 print(name.__class__)

5

6

7 def func(): pass

8 print(func.__class__)

9

10

11 class MyClass():

12 pass

13 print(MyClass.__class__)

<class ’int’>

<class ’str’>

<class ’function’>

4.2. METACLASSES 141

<class ’type’>

We can also check what is the creator class of all the previous classes:

1 print(height.__class__.__class__)

2 print(name.__class__.__class__)

3 print(func.__class__.__class__)

4 print(MyClass.__class__.__class__)

<class ’type’>

<class ’type’>

<class ’type’>

<class ’type’>

"metaclass" keyword argument in base classes

We can add the metaclass keyword in the list of keyword arguments of a class. If we do it, Python uses that

metaclass to create the class; otherwise, Python will use type to create it:

1 class MyBody(Body):

2 pass

3

4

5 class MyOtherBody(Body, metaclass=type):

6 pass

Python asks if the metaclass keyword is defined within MyBody class arguments. If the answer is “yes”, like in

MyOtherBody, a class with that name is created in memory using the value of metaclass as a creator. If the

answer is “no”, Python will use the same metaclass of the parent class to create the new class. In the case of MyBody,

the metaclass used is Body’s metaclass i.e: type. What can we put in metaclass?: Anything that can create a

class. In Python, type or any object that inherits from it can create a class.

Personalized Metaclasses

Before we start explaining of to personalize a metaclass, we will take a look at the structure of regular Python classes

we have been using so far:

1 class System:

142 CHAPTER 4. META CLASSES

2 # users_dict = {} we will do this automatically inside __new__

3

4 # cls is the object that represents the class

5 def __new__(cls, *args, **kwargs):

6 cls.users_dict = {}

7 cls.id_ = cls.generate_user_id()

8 # object has to create the class (everything inherits from object)

9 return super().__new__(cls)

10

11 # recall that self is the object that represents the instance of the class

12 def __init__(self, name):

13 self.name = name

14

15 def __call__(self, *args, **kwargs):

16 return [System.users_dict[ar] for ar in args]

17

18 @staticmethod

19 def generate_user_id():

20 count = 0

21 while True:

22 yield count

23 count += 1

24

25 def add_user(self, name):

26 System.users_dict[name] = next(System.id_)

27

28

29 if __name__ == "__main__":

30 e = System("Zoni")

31 e.add_user("KP")

32 e.add_user("CP")

33 e.add_user("BS")

34 print(e.users_dict)

35 print(e("KP", "CP", "BS"))

36 print(System.mro()) # prints the class and superclasses

4.2. METACLASSES 143

{’KP’: 0, ’CP’: 1, ’BS’: 2}

[0, 1, 2]

[<class ’__main__.System’>, <class ’object’>]

The __new__ method is in charge of the construction of the class. cls corresponds to the object that represents the

created class. Any modification we want to do in the class before its creation can be done inside the __new__ method.

In the example above, we are creating a dictionary (users_dict) and an id (id_). Both of them will belong to

the class (static), not to the instances of the class. Note that __new__ has to return the created class, in this case

returning the result of the __new__ method of the superclass.

Inside __init__, the class is already created. Now the main goal is to initialize the instances of it, by modifying

self, the object that represents the instance of the class. In the example above, the instance initialization just registers

the variable name inside the instance (self.name = name).

Finally, the __call__ method is in charge of the action that will be performed every time an instance of the class is

called with parenthesis (treated as a callable). In the example, when we execute e("KP", "CP", "BS"), we are

executing e.__call__ with the passed arguments.

Now we are ready to understand how to personalize a metaclass. Following the same structure of regular Python

classes mentioned above, imagine that the class now is a metaclass, and the instance is a class. In other words, instead

of cls we use mcs in the __new__ method and instead of self we use cls in the __init__ method. The

__call__ method will be in charge of the action performed when an instance of the metaclass (i.e. the class) is

called with parenthesis.

The primary purpose of metaclasses is to change a class automatically during its creation. To control the creation and

initialization of a class, we can implement the __new__ and __init__ methods in the metaclass (overriding). We

must implement __new__: when we want to control the creation of a new object (class); and __init__: when we

want to control the object initialization (in this context a class) after its creation.

1 class MyMetaClass(type):

2

3 def __new__(meta, clsname, bases, clsdict):

4 print('-----------------------------------')

5 print("Creating Class: {} ".format(clsname))

6 print(meta)

7 print(bases)

8 # Suppose we want to have a mandatory attribute

144 CHAPTER 4. META CLASSES

9 clsdict.update(dict({'mandatory_attribute': 10}))

10 print(clsdict)

11 return super().__new__(meta, clsname, bases, clsdict)

12 # we are calling 'type' __new__ method after doing the desired

13 # modifications. Note hat this method is the one that would have

14 # been called had we not used this personalized metaclass

15

16

17 class MyClass(metaclass=MyMetaClass):

18

19 def func(self, params):

20 pass

21

22 my_param = 4

23

24 m1 = MyClass()

25 print(m1.mandatory_attribute)

Creating Class: MyClass

<class ’MyMetaClass’>

()

{’mandatory_attribute’: 10, ’my_param’: 4, ’__qualname__’: ’MyClass’,

’func’: <function MyClass.func at 0x1078e0620>, ’__module__’: ’builtins’}

10

Overwriting the __call__ method

The __call__ method is executed each time the already created class is called to instantiate a new object. Here is

an example of how the __call__ method can be intercepted whenever an object is instantiated:

1 class MyMetaClass(type):

2

3 def __call__(cls, *args, **kwargs):

4 print("__call__ of {}".format(str(cls)))

5 print("__call__ *args= {}".format(str(args)))

6 return super().__call__(*args, **kwargs)

4.2. METACLASSES 145

7

8

9 class MyClass(metaclass=MyMetaClass):

10

11 def __init__(self, a, b):

12 print("MyClass object with a=%s, b=%s" % (a, b))

13

14 print('creating a new object...')

15 obj1 = MyClass(1, 2)

creating a new object...

__call__ of <class ’MyClass’>

__call__ *args= (1, 2)

MyClass object with a=1, b=2

Overwriting the __init__ method

We can also override the __init__ method to mimic the behavior of the previous example. The main difference

is that __init__ (just like __new__) is called upon when creating the class, however __call__ is called when

creating a new instance:

1 class MyMetaClass(type):

2

3 def __init__(cls, name, bases, dic):

4 print("__init__ of {}".format(str(cls)))

5 super().__init__(name, bases, dic)

6

7

8 class MyClass(metaclass=MyMetaClass):

9

10 def __init__(self, a, b):

11 print("MyClass object with a=%s, b=%s" % (a, b))

12

13 print('creating a new object...')

14 obj1 = MyClass(1, 2)

__init__ of <class ’MyClass’>

146 CHAPTER 4. META CLASSES

creating a new object...

MyClass object with a=1, b=2

4.3 Hands-On Activities

Activity 4

In the file called AC04_0_provided_code.py we have two implemented classes and a main. You have to create a

metaclass called MetaRobot that must add the following data and methods to the Robot class:

• The creator (static) variable: It must be your user id

• The start_ip (static) variable: It is the IP address from where the robot is initialized. The address is

"190.102.62.283"

• The check_creator method: This method verifies that the robot exists inside the list of programmers. I

must print out a message indicating if the creator is inside the programmer’s list or not.

• The disconnect method: By using this method, the robot can disconnect any hacker that is on the same port

as the robot. In case the robot finds a hacker in the same port, it must print out a message telling the situation.

Assume that the port’s hacker attribute has to be changed to 0 to disconnect it.

• The change_node method: With this method, the robot can modify the node (port) to anyone that gets inside

the network. It must print out a message indicating from what node it is coming from and what is its destination.

Consider that only the Robot class can be builded from the MetaRobot metaclass. In case any other

class is attempted to be created from MetaRobot you should raise an error. It is forbiden to modify the

AC04_0_provided_code.py file, everything has to be done through the MetaRobot metaclass.

