
Chapter 3

Functional Programming

In general, the most used programming approach for introductory courses is the procedural one, where we organize

the code as a list of instructions that tell the computer how to process a given input. In chapter 1 we introduced the

Object-Oriented paradigm, where programs represent the functionalities by objects-interaction through their attributes

and methods that modify the attributes or states of each object. In the functional approach, we organize our code as a

set of related functions that we can pass as arguments, modify or return them. Functions’ outputs can be inputs to

other functions. Functions’ scope is only the code contained inside them; they do not use or modify any data outside

their scope

The functional programming forces us to write a modular solution, breaking into apart our tasks into small pieces. It is

advantageous during debugging and testing because the wrote functions are small and easy to read. In debugging, we

can quickly isolate errors in a particular function. When we test a program, we see each function as a unit, so we only

need to create the right input and then check its corresponding output.

Python is a multi-paradigm programming language, i. e, our solutions could be written simultaneously either in a

procedural way, using object-oriented programming or applying a functional approach. In this chapter, we explain the

core concepts of functional programming in Python and how we develop our applications using this technique.

3.1 Python Functions

There are many functions already implemented in Python, mainly to simplify and to abstract from calculations that we

can apply to several different types of classes (duck typing). We recommend the reader to check the complete list of

built-in functions in [1]. Let’s see a few examples:

102 CHAPTER 3. FUNCTIONAL PROGRAMMING

Len

Returns the number of elements in any container (list, array, set, etc.)

1 print(len([3, 4, 1, 5, 5, 2]))

2 print(len({'name': 'John', 'lastname': 'Smith'}))

3 print(len((4, 6, 2, 5, 6)))

6

2

5

This function comes implemented as the internal method (__len__) in most of Python default classes:

1 print([3, 4, 1, 5, 5, 2].__len__())

2 print({'name': 'John', 'lastname': 'Smith'}.__len__())

6

2

When len(MyObject) is called, it actually calls the method MyObject.__len__():

1 print(id([3, 4, 1, 5, 5, 2].__len__()))

2 print(id(len([3, 4, 1, 5, 5, 2])))

4490937616

4490937616

We can also override the __len__ method. Suppose we want to implement a special type of list (MyList) such that

len(MyList()) returns the length of the list ignoring repeated occurences:

1 from collections import defaultdict

2

3

4 class MyList(list):

5 def __len__(self):

6 # Each time this method is called with a non-existing key, the

7 # key-value pair is generated with a default value of 0

8 d = defaultdict(int)

9 # This value comes from calling "int" without arguments. (Try

3.1. PYTHON FUNCTIONS 103

10 # typing int() on Python's console)

11

12 # Here we call the original method from the super-class list

13 for i in range(list.__len__(self)):

14 d.update({self[i]: d[self[i]] + 1})

15

16 # Here we call d's (a defaultdict) len method

17 return len(d)

18

19

20 L = MyList([1, 2, 3, 4, 5, 6, 6, 7, 7, 7, 7, 2, 2, 3, 3, 1, 1])

21 print(len(L))

7

1 from collections import defaultdict

2

3 # Another way of achieving the same behaviour

4 class MyList2(list):

5 def __len__(self):

6 d = defaultdict(int)

7

8 for i in self: # Here we iterate over the items contained in the object

9 d.update({i: d[i] + 1})

10

11 return len(d)

12

13

14 L = MyList2([1, 2, 3, 4, 5, 6, 6, 7, 7, 7, 7, 2, 2, 3, 3, 1, 1])

15 print(len(L))

7

1 # Yet another way

2 class MyList3(list):

3 def __len__(self):

4 d = set(self)

104 CHAPTER 3. FUNCTIONAL PROGRAMMING

5 return len(d)

6

7 L = MyList3([1, 2, 3, 4, 5, 6, 6, 7, 7, 7, 7, 2, 2, 3, 3, 1, 1])

8 print(len(L))

7

Getitem

Declaring this function within a class allows each instance to become iterable (you can iterate over the object, soon we

delve further into iterable objects). Besides allowing iteration, the __getitem__ method lets us use indexation over

the objects:

1 class MyClass:

2 def __init__(self, word=None):

3 self.word = word

4

5 def __getitem__(self, i):

6 return self.word[i]

7

8

9 p = MyClass("Hello World")

10 print(p[0])

11

12 [print(c) for c in p]

13

14 (a, b, c, d) = p[0:4]

15 print(a, b, c, d)

16 print(list(p))

17 print(tuple(p))

H

H

e

l

l

o

3.1. PYTHON FUNCTIONS 105

W

o

r

l

d

H e l l

[’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’]

(’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’)

Reversed

The reversed function takes a sequence as input and returns a copy of the sequence in reversed order. We can also

customize the function by overriding the __reversed__ method in each class. If we do not customize this function,

the built-in will be used, by iterating once from __len__ to 0 using the __getitem__ method.

1 a_list = [1, 2, 3, 4, 5, 6]

2

3

4 class MySequence:

5 # given that we are not overriding the __reversed__ method, the built-in

6 # will be used (iterating with __getitem__ and __len___)

7 def __len__(self):

8 return 9

9

10 def __getitem__(self, index):

11 return "Item_{0}".format(index)

12

13

14 class MyReversed(MySequence):

15 def __reversed__(self):

16 return "Reversing!!"

17

18

19 for seq in a_list, MySequence(), MyReversed():

20 print("\n{} : ".format(seq.__class__.__name__), end="")

106 CHAPTER 3. FUNCTIONAL PROGRAMMING

21 for item in reversed(seq):

22 print(item, end=", ")

list : 6, 5, 4, 3, 2, 1,

MySequence : Item_8, Item_7, Item_6, Item_5, Item_4, Item_3, Item_2, Item_1,

Item_0,

MyReversed : R, e, v, e, r, s, i, n, g, !, !,

Enumerate

The enumerate method creates an iterable of tuples, where the first item in each tuple is the index and the second is

the original object in the corresponding index.

1 a_list = ["a", "b", "c", "d"]

2

3 for i, j in enumerate(a_list):

4 print("{}: {}".format(i, j))

5

6 print([pair for pair in enumerate(a_list)])

7

8 # We create a dictionary using the index given by "enumerate" as key

9 print({i: j for i, j in enumerate(a_list)})

0: a

1: b

2: c

3: d

[(0, ’a’), (1, ’b’), (2, ’c’), (3, ’d’)]

{0: ’a’, 1: ’b’, 2: ’c’, 3: ’d’}

Zip

This function takes n sequences (two or more) and generates a sequence of n-tuples with the relative objects in each

sequence:

1 variables = ['name', 'lastname', 'email']

2 p1 = ["John", 'Smith', 'js1@hotmail.com']

3.1. PYTHON FUNCTIONS 107

3 p2 = ["Thomas", 'White', 'thwh@gmail.com']

4 p3 = ["Jeff", 'West', 'jwest@yahoo.com']

5

6 contacts = []

7 for p in p1,p2,p3:

8 contact = zip(variables, p)

9 contacts.append(dict(contact))

10

11 for c in contacts:

12 print("Name: {name} {lastname}, email: {email}".format(**c))

13 #**c passes the dictionary as a keyworded list of arguments

Name: John Smith, email: js1@hotmail.com

Name: Thomas White, email: thwh@gmail.com

Name: Jeff West, email: jwest@yahoo.com

The zip function is also its own inverse:

1 A = [1, 2, 3, 4]

2 B = ['a', 'b', 'c', 'd']

3

4 zipped = zip(A, B)

5 zipped = list(zipped)

6 print(zipped)

7 unzipped = zip(*zipped)

8 unzipped = list(unzipped)

9 print(unzipped)

[(1, ’a’), (2, ’b’), (3, ’c’), (4, ’d’)]

[(1, 2, 3, 4), (’a’, ’b’, ’c’, ’d’)]

Comprehensions

Defining a set of elements by comprehension allows you to explicitly describe the content without enumerating each

one of the elements. In Python we can do this as follows:

List comprehensions:

108 CHAPTER 3. FUNCTIONAL PROGRAMMING

1 a_list = ['1', '4', '55', '65', '4', '15', '90']

2 int_list = [int(c) for c in a_list]

3 print("int_list:", int_list)

4

5 int_list_2d = [int(c) for c in a_list if len(c) > 1]

6 print("int_list_2d:", int_list_2d)

int_list: [1, 4, 55, 65, 4, 15, 90]

int_list_2d: [55, 65, 15, 90]

Sets and Dictionary comprehensions:

1 from collections import namedtuple

2

3 #namedtuple is a tuple subclass that has fields (with arbitrary names),

4 #which can be accessed as tuple.field

5 Movie = namedtuple("Movie", ["title", "director", "genre"])

6 movies = [Movie("Into the Woods", "Rob Marshall", "Adventure"),

7 Movie("American Sniper", "Clint Eastwood", "Action"),

8 Movie("Birdman", "Alejandro Gonzalez Inarritu", "Comedy"),

9 Movie("Boyhood", "Richard Linklater", "Drama"),

10 Movie("Taken 3", "Olivier Megaton", "Action"),

11 Movie("The Imitation Game", "Morten Tyldum", "Biography"),

12 Movie("Gone Girl", "David Fincher", "Drama")]

13

14 # set comprehension

15 action_directors = {b.director for b in movies if b.genre == 'Action'}

16 print(action_directors)

{’Clint Eastwood’, ’Olivier Megaton’}

We can create dictionaries from search results:

1 action_directors_dict = {b.director: b for b in movies if b.genre == 'Action'}

2 print(action_directors_dict)

3 print(action_directors_dict['Olivier Megaton'])

{’Clint Eastwood’: Movie(title=’American Sniper’, director=’Clint Eastwood’,

3.1. PYTHON FUNCTIONS 109

genre=’Action’), ’Olivier Megaton’: Movie(title=’Taken 3’,

director=’Olivier Megaton’, genre=’Action’)}

Movie(title=’Taken 3’, director=’Olivier Megaton’, genre=’Action’)

Iterables and Iterators

A iterable is any object over which you can iterate. Therefore, we can use any iterable on the right side of a for loop.

We can iterate an infinite amount of times over an iterable, just like with lists. This type of objects must contain the

__iter__ method.

A iterator is an object that iterates over an iterable. These objects contain the __next__ method, which will return

the next element each time we call it. The object returned by the __iter__ method must be an iterator. Let’s see the

following example:

1 x = [11, 32, 43]

2 for c in x:

3 print(c)

4 print(x.__iter__)

5 next(x) # Lists are not iterators

11

32

43

<method-wrapper ’__iter__’ of list object at 0x10bef2e48>

’list’ object is not an iterator

As we can see above, list objects are not iterators, but we can get an iterator over a list by calling the iter method.

1 y = iter(x) # equivalent to x.__iter__

2 print(next(y))

3 print(next(y))

4 print(next(y))

11

32

43

1 class Card:

110 CHAPTER 3. FUNCTIONAL PROGRAMMING

2 FACE_CARDS = {11: 'J', 12: 'Q', 13: 'K'}

3

4 def __init__(self, value, suit):

5 self.suit = suit

6 self.value = value if value <= 10 else Card.FACE_CARDS[value]

7

8 def __str__(self):

9 return "%s %s" % (self.value, self.suit)

10

11

12 class Deck:

13 def __init__(self):

14 self.cards = []

15 for s in ['Spades', 'Diamonds', 'Hearts', 'Clubs']:

16 for v in range(1, 14):

17 self.cards.append(Card(v, s))

18

19

20 for c in Deck().cards:

21 print(c)

1 Spades

...

K Spades

1 Diamonds

...

K Diamonds

1 Hearts

...

K Hearts

1 Clubs

...

K Clubs

Even though a Deck instance contains many cards, we can not iterate directly over it, only over Deck().cards

(which corresponds to a list, an iterable object). Suppose we want to iterate over Deck() directly. In order to do so,

3.1. PYTHON FUNCTIONS 111

we should define the __iter__ method.

1 class Deck:

2 def __init__(self):

3 self.cards = []

4 for p in ['Spades', 'Diamonds', 'Hearts', 'Clubs']:

5 for n in range(1, 14):

6 self.cartas.append(Card(n, p))

7

8 def __iter__(self):

9 return iter(self.cards)

10

11

12 for c in Deck():

13 print(c)

1 Spades

...

K Spades

1 Diamonds

...

K Diamonds

1 Hearts

...

K Hearts

1 Clubs

...

K Clubs

Let’s see an example of how to create an iterator:

1 class Fib:

2 def __init__(self):

3 self.prev = 0

4 self.curr = 1

5

6 def __iter__(self):

7 return self

112 CHAPTER 3. FUNCTIONAL PROGRAMMING

8

9 def __next__(self):

10 value = self.curr

11 self.curr += self.prev

12 self.prev = value

13 return value

14

15

16 f = Fib()

17 N = 10

18 l = [next(f) for i in range(N)]

19 print(l)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Python’s module “itertools” provides many iterators. Here are some examples:

1 import itertools

2

3 letters = ['a', 'b', 'c', 'd', 'e', 'f']

4 bools = [1, 0, 1, 0, 0, 1]

5 nums = [23, 20, 44, 32, 7, 12]

6 decimals = [0.1, 0.7, 0.4, 0.4, 0.5]

7

8 # Iterates indefinitely over letters.

9 colors = itertools.cycle(letters)

10 print(next(colors))

11 print(next(colors))

12 print(next(colors))

13 print(next(colors))

14 print(next(colors))

15 print(next(colors))

16 print(next(colors))

17 print(next(colors))

18 print(next(colors))

19 print(next(colors))

3.1. PYTHON FUNCTIONS 113

a

b

c

d

e

f

a

b

c

d

1 # Iterates across all the iterables in the arguments consecutively.

2 for i in itertools.chain(letters, bools, decimals):

3 print(i, end=" ")

a b c d e f 1 0 1 0 0 1 0.1 0.7 0.4 0.4 0.5

1 # Iterates over the elements in letters according to the condition in bools.

2 for i in itertools.compress(letters, bools):

3 print(i, end=" ")

a c f

Generators

Generators are a particular type of iterators; they allow us to iterate over sequences without the need to save them in

a data structure, avoiding unnecessary memory usage. Once we finish the iteration over a generator, the generator

disappears. It is useful when you want to perform calculations on sequences of numbers that only serve a purpose in a

particular calculation. The syntax for creating generators is very similar to a list comprehension, but instead of using

square brackets [], we use parentheses ():

1 from sys import getsizeof

2

3 # using parenthesis indicates that we are creating a generator

4 a = (b for b in range(10))

5

6 print(getsizeof(a))

114 CHAPTER 3. FUNCTIONAL PROGRAMMING

7

8 c = [b for b in range(10)]

9

10 # c uses more memory than a

11 print(getsizeof(c))

12

13 for b in a:

14 print(b)

15

16 print(sum(a)) # the sequence has disappeared

72

192

0

1

2

3

4

5

6

7

8

9

0

Example: Suppose that the archive logs.txt contains the following lines::

Abr 13, 2014 09:22:34

Jun 14, 2014 08:32:11

May 20, 2014 10:12:54

Dic 21, 2014 11:11:62

WARNING We are about to have a problem.

WARNING Second Warning!

WARNING This is a bug

WARNING Be careful

3.1. PYTHON FUNCTIONS 115

1 inname, outname = "logs.txt", "logs_out.txt"

2

3 with open(inname) as infile:

4 with open(outname, "w") as outfile:

5 warnings = (l.replace('WARNING', '') for l in infile if 'WARNING' in l)

6 for l in warnings:

7 outfile.write(l)

The contents of logs_out.txt should read as goes:

We are about to have a problem.

Second Warning!

This is a bug

Be careful

Generator Functions

Python functions are also able to work as generators, through the use of the yield statement. yield replaces

return, which besides being responsible for returning a value, it assures that the next function call will be executed

starting from that point. In other words, we work with a method that once it “returns” a value through yield, it

transfers the control back to the outer scope only temporarily, waiting for a successive call to “generate” more values.

Calling a generator function creates a generator object. However, this does not start the execution of the function:

1 def dec_count(n):

2 print("Counting down from {}".format(n))

3 while n > 0:

4 yield n

5 n -= 1

The function is only executed once we call the generated object’s __next__ method:

1 x = dec_count(10) # Note that this does not print anything

2 print("{}\n".format(x)) # here we are printing the object itself

3 y = dec_count(5)

4 print(next(y))

5 print(next(y))

6 print(next(y))

116 CHAPTER 3. FUNCTIONAL PROGRAMMING

7 print(next(y))

<generator object dec_count at 0x1080464c8>

Counting down from 5

5

4

3

2

1 def fibonacci():

2 a, b = 0, 1

3 while True:

4 yield b

5 a, b = b, a + b

6

7

8 f = fibonacci()

9 print(next(f))

10 print(next(f))

11 print(next(f))

12 print(next(f))

13 print(next(f))

14 print(next(f))

15 g1 = [next(f) for i in range(10)]

16 print(g1)

17 g2 = (next(f) for i in range(10))

18 for a in g2:

19 print(a)

1

1

2

3

5

8

[13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

3.1. PYTHON FUNCTIONS 117

1597

2584

4181

6765

10946

17711

28657

46368

75025

121393

1 import numpy as np

2

3 def maximum(values):

4 temp_max = -np.infty

5 for v in values:

6 if v > temp_max:

7 temp_max = v

8 yield temp_max

9

10 elements = [10, 14, 7, 9, 12, 19, 33]

11 res = maximum(elements)

12 print(next(res))

13 print(next(res))

14 print(next(res))

15 print(next(res))

16 print(next(res))

17 print(next(res))

18 print(next(res))

19 print(next(res)) # we've run out of list elements!

10

14

14

14

14

118 CHAPTER 3. FUNCTIONAL PROGRAMMING

19

33

We can also interact with a function by sending messages. The send method allows us to send a value to the generator.

We can assign that value to a variable by using the yield statement. When we write a = yield, we are assigning

to the variable a the value sent by the send method. When we write a = yield b1, besides assigning the sent

value to a, the function is returning the object b:

1 def mov_avg():

2 print("Entering ...")

3 total = float((yield))

4 cont = 1

5 print("total = {}".format(total))

6 while True:

7 print("While loop ...")

8 # Here i receive the message and also the yield returns total/count

9 i = yield total / cont

10 cont += 1

11 total += i

12 print("i = {}".format(i))

13 print("total = {}".format(total))

14 print("cont = {}".format(cont))

Note that the code must run until the first yield in order to start accepting values through send(). Hence it is

always necessary to call next() (or send(None)) after having created the generator to be able to start sending

data:

1 m = mov_avg()

2 print("Entering to the first next")

3 next(m) # We move to the first yield

4 print("Leaving the first next")

5 m.send(10)

6 print("Entering to send(5)")

7 m.send(5)

8 print("Entering to send(0)")

9 m.send(0)

1Use of parentheses around yield b may be needed if you want to operate over the sent value

3.1. PYTHON FUNCTIONS 119

10 print("Entering to second send(0)")

11 m.send(0)

12 print("Entering to send(20)")

13 m.send(20)

Entering to the first next

Entering ...

Leaving the first next

total = 10.0

While loop ...

Entering to send(5)

i = 5

total = 15.0

cont = 2

While loop ...

Entering to send(0)

i = 0

total = 15.0

cont = 3

While loop ...

Entering to second send(0)

i = 0

total = 15.0

cont = 4

While loop ...

Entering to send(20)

i = 20

total = 35.0

cont = 5

While loop ...

The following example shows how to perform the UNIX grep command by using a generator function.

1 def grep(pattern):

2 print("Searching for %s" % pattern)

3 while True:

4 line = yield

120 CHAPTER 3. FUNCTIONAL PROGRAMMING

5 if pattern in line:

6 print(line)

7

8

9 o = grep("Hello") # creating the object won't execute the function yet

10 next(o) # Move on to the first yield, "Searching for ..." will be printed

11

12 o.send("This line contains Hello")

13 o.send("This line won't be printed")

14 o.send("This line will (because it contains Hello :))")

15 o.send("This line won't be shown either")

Searching for Hello

This line contains Hello

This line will (because it contains Hello :))

Lambda Functions

Lambda functions are short methods created “on the fly”. Their expressions are always returned (no need for the

“return” statement). Examples:

1 strings = ["ZZ", "YY", "bb", "aa"]

2 print("Simple sort:", sorted(strings))

3

4 # If we want to sort according to the lowercase values:

5 def lower(s):

6 return s.lower()

7

8 print("Lower sort: ", sorted(strings, key=lower))

9

10 # The same result can be achieved with a lambda function:

11 print("Lambda sort:", sorted(strings, key=lambda s: s.lower()))

Simple sort: [’YY’, ’ZZ’, ’aa’, ’bb’]

Lower sort: [’aa’, ’bb’, ’YY’, ’ZZ’]

Lambda sort: [’aa’, ’bb’, ’YY’, ’ZZ’]

3.1. PYTHON FUNCTIONS 121

Map

The map function takes a function and an iterable and returns a generator that results from applying the function to

each value on the iterable. map(f, iterable) is equivalent to [f(x) for x in iterable]

1 from matplotlib import pyplot as plt

2 import numpy as np

3

4 pow2 = lambda x: x ** 2

5 # Creates a 100 element numpy array, ranging evenly from -1 to 1

6 t = np.linspace(-1., 1., 100)

7 plt.plot(t, list(map(pow2, t)), 'xb')

8 plt.show()

We can also apply map to more than one iterable at once:

1 a = [1, 2, 3, 4]

2 b = [17, 12, 11, 10]

3 c = [-1, -4, 5, 9]

4

5 c1 = list(map(lambda x, y: x + y, a, b))

6

7 c2 = list(map(lambda x, y, z: x + y + z, a, b, c))

8

9 c3 = list(map(lambda x, y, z: 2.5 * x + 2 * y - z, a, b, c))

10

122 CHAPTER 3. FUNCTIONAL PROGRAMMING

11 print(c1)

12 print(c2)

13 print(c3)

[18, 14, 14, 14]

[17, 10, 19, 23]

[37.5, 33.0, 24.5, 21.0]

Filter

filter(f, sequence) returns a new sequence that includes all the values from the original sequence in which

the result of applying f(value) was True. Function f should always return a boolean value:

1 f = fibonacci() # Defined before

2 fib = [next(f) for i in range(11)]

3 odds = list(filter(lambda x: x % 2 != 0, fib))

4 print("Odd:", odds)

5

6 even = list(filter(lambda x: x % 2 == 0, fib))

7 print("Even:", even)

Odd: [1, 1, 3, 5, 13, 21, 55, 89]

Even: [2, 8, 34]

Reduce

reduce(f, [s1,s2,s3,...,sn]) returns the result of applying f over the sequence [s1,s2,s3,...,sn]

as follows: f(f(f(f(s1,s2),s3),s4),s5),... The following code shows an example:

1 from functools import reduce

2 import datetime

3

4 reduce(lambda x, y: x + y, range(1, 10))

5

6 # Lets compute the length of a file's longest line

7 # rstrip returns a string copy that has no trailing spaces

8 #(or the character specified)

3.2. DECORATORS 123

9 # eg: "Hello...".rstrip(".") returns "Hello"

10

11 t = datetime.datetime.now()

12 r1 = reduce(max, map(lambda l: len(l.rstrip()), [line for line

13 in open('logs_out.txt')]))

14 print("reduce time: {}".format(datetime.datetime.now() - t))

15 print(r1)

16

17 # Another way of doing the same with generator comprehensions and numpy

18 t = datetime.datetime.now()

19 r2 = max((len(line.rstrip()) for line in open('logs_out.txt')))

20 print("max(generator) time: {}".format(datetime.datetime.now() - t))

21 print(r2)

22

23 # To visualize the lines of the file

24 for line in open('logs_out.txt'):

25 print(line.rstrip())

reduce time: 0:00:00.000224

31

max(generator) time: 0:00:00.000158

31

We are about to have a problem.

Second Warning!

This is a bug

Be careful

3.2 Decorators

Decorators allow us to take an already implemented feature, add some behavior or additional data and return a new

function. We can see decorators as functions that receive any function f1 and return a new function f2 with a

modified behaviour. If our decorator is called dec_1, in order to modify a function and assign it to the same name,

we should simply write f1 = dec_1(f1).

124 CHAPTER 3. FUNCTIONAL PROGRAMMING

Our function f1 now contains the new data and aggregate behavior. One benefit of decorators is that we avoid the

need to modify the code of the original function (and if we want the original version of the function, we simply

remove the call to the decorator). It also avoids creating a different function with a different name (this would imply

modifying all the calls to the function you want to change).

Take the following inefficient recursive implementation of a function that returns the Fibonacci numbers:

1 import datetime

2

3

4 def fib(n):

5 if n == 0:

6 return 0

7 elif n == 1:

8 return 1

9 else:

10 return fib(n - 1) + fib(n - 2)

11

12

13 n = 35

14 t1 = datetime.datetime.now()

15 print(fib(n))

16 print("Execution time: {}".format(datetime.datetime.now() - t1))

9227465

Execution time: 0:00:06.462758

A more efficient implementation might try to “store” numbers already calculated in the Fibonacci sequence. We can

use a decorator that receives the fib function, adds memory to it and checks for the existence of that number in a

previous call:

1 def efficient_fib(f): # recieves a function as an argument

2 data = {}

3

4 def func(x): # this is the new function to be returned

5 if x not in data:

6 data[x] = f(x) # the function recieved as an argument

3.2. DECORATORS 125

7 #is now called

8 return data[x]

9

10 return func

11

12 # we use the decorator.

13 fib = efficient_fib(fib)

14 # The fib function is now "decorated" by the function

15 #"efficient_fib"

16 t1 = datetime.datetime.now()

17

18 # We still use the same function name, there is no need

19 #to call the new function

20 print(fib(n))

21 print("Execution time: {}".format(datetime.datetime.now() - t1))

9227465

Execution time: 0:00:00.000144

Using Python’s alternative notation for decorators:

1 @eficient_fib

2 def fib(n):

3 if n == 0:

4 return 0

5 elif n == 1:

6 return 1

7 else:

8 return fib(n-1) + fib(n-2)

9

10 n = 35

11 t1 = datetime.datetime.now()

12 print(fib(n))

13 print("Execution time: {}".format(datetime.datetime.now()-t1))

9227465

Execution time: 0:00:00.000038

126 CHAPTER 3. FUNCTIONAL PROGRAMMING

We can use a hierarchy of decorators and receive parameters for decoration. A generic way to do this is:

1 def mydecorator(function):

2 def _mydecorator(*args, **kw):

3 # Do stuff here before calling the original function

4 # call the function

5 res = function(*args, **kw)

6 # Do more stuff after calling the function

7 return res

8

9 # return the sub-function

10 return _mydecorator

1 import time

2 import hashlib

3 import pickle

4

5 cache = {}

6

7

8 def is_obsolete(entry, duration):

9 return time.time() - entry['time'] > duration

10

11

12 def compute_key(function, args, kw):

13

14 key = pickle.dumps((function.__name__, args, kw))

15 # returns the pickle representation of an object as a byte object

16 # instead of writing it on a file

17

18 # creates a key from the "frozen" key generated in the last step

19 return hashlib.sha1(key).hexdigest()

20

21

22 def memoize(duration=10):

23 def _memoize(function):

24 def __memoize(*args, **kw):

3.2. DECORATORS 127

25 key = compute_key(function, args, kw)

26

27 # do we have the value on cache?

28 if key in cache and not is_obsolete(cache[key], duration):

29 print('we already have the value')

30 return cache[key]['value']

31

32 # if we didn't

33 print('calculating...')

34 result = function(*args, **kw)

35 # storing the result

36 cache[key] = {'value': result, 'time': time.time()}

37 return result

38

39 return __memoize

40

41 return _memoize

1 @memoize(0.0001)

2 def complex_process(a, b):

3 return a + b

4

5 # This is the same as calling

6 # complex_process = memoize(0.0001)(complex_process)

7 # after defining the function

8

9 print(complex_process(2, 2))

10 print(complex_process(2, 1))

11 print(complex_process(2, 2))

12 print(complex_process(2, 2))

13 print(complex_process(2, 2))

14 print(complex_process(2, 2))

15 print(complex_process(2, 2))

16 print(complex_process(2, 2))

17 print(complex_process(2, 2))

128 CHAPTER 3. FUNCTIONAL PROGRAMMING

calculating...

4

calculating...

3

we already have the value

4

we already have the value

4

we already have the value

4

calculating...

4

we already have the value

4

we already have the value

4

we already have the value

4

Here an example of an access protection decorator:

1 class User:

2 def __init__(self, roles):

3 self.roles = roles

4

5

6 class Unauthorized(Exception):

7 pass

8

9

10 def protect(role):

11 def _protect(function):

12 def __protect(*args, **kw):

13 user = globals().get('user')

14 if user is None or role not in user.roles:

15 raise Unauthorized("Not telling you!!") # exceptions coming soon!

3.2. DECORATORS 129

16 return function(*args, **kw)

17

18 return __protect

19

20 return _protect

21

22

23 john = User(('admin', 'user'))

24 peter = User(('user',))

25

26

27 class Secret:

28 @protect('admin')

29 def pisco_sour_recipe(self):

30 print('Use lots of pisco!')

31

32

33 s = Secret()

34 user = john

35 s.pisco_sour_recipe()

36 user = peter

37 s.pisco_sour_recipe()

Use lots of pisco!

__main__.Unauthorized: Not telling you!!

We can also decorate classes in the same way we decorate functions:

1 # Lets suppose we want to decorate a class such that it prints a warning

2 # when we try to spend more than what we've got

3 def add_warning(cls):

4 prev_spend = getattr(cls, 'spend')

5

6 def new_spend(self, money):

7 if money > self.money:

8 print("You are spending more than what you have, "

9 "a debt has been generated in your account!!")

130 CHAPTER 3. FUNCTIONAL PROGRAMMING

10 prev_spend(self, money)

11

12 setattr(cls, 'spend', new_spend)

13 return cls

14

15

16 @add_warning

17 class Buy:

18 def __init__(self, money):

19 self.money = money

20 self.debt = 0

21

22 def spend(self, money):

23 self.money -= money

24 if self.money < 0:

25 self.debt = abs(self.money) # the debt is considered positive

26 self.money = 0

27 print("Current Balance = {}".format(self.money))

28

29

30 b = Buy(1000)

31 b.spend(1200)

You are spending more than what you have, a debt has been generated in your account!!

Current Balance = 0

3.3 Hands-On Activities

Activity 3.1

In this activity, we have a file called Report.txt contains information about patients that attended to the city hospital

during one year. Each line refers to the fields year of attention, month of attention, day of the week, assigned color,

time of attention and release reason, separated by tabs. The assigned color shows how critical is the medical condition

of the patient. The color code is from most to less critical: blue, red, orange, yellow and green. Your task is to create

an application able to read the information from the file and generate the necessary classes and objects using this

information. To read the file, you have to create a generator function that yields each line of the file one by one. You

3.3. HANDS-ON ACTIVITIES 131

will also have to create a class called Report. An instance of this class has to keep the list of all the patients. The

instance of Report has to be a iterable, such that, iterations over it must return each patient in its list of patients.

Also, the Report class have to contain a function that given a color it returns all the patients assigned to this color.

The returned list must be created using comprehension.

Each patient instance have all the information contained in the file Report.txt plus a personal id generated by using a

generator function. Also, each patient must be able to be printed showing all his personal information, including the

id assigned by the system. After reading all the file, your application must print out all the patients.

Activity 3.2

A soccer team needs to hire some new players to improve their results in the next sports season. They bought a data

file called players.txt that contains information with most of the soccer players in the league. The team asks

your help to process the data file and get valuable information for hiring. Each line of the archive contains information

about one player in comma separated values format (CSV):

names; last_name_1; last_name_2; country; footedness; birth_day; birth_month;

birth_year; number_of_goals; high_cm, weight_kg

Using mostly only map, reduce and filter, you must perform the following tasks:

1. Read the data file players.txt using map. Generate a list of tuples, where each tuple contains the data from

each player.

2. For each of the queries below, create a function name_query(list_tuples) that returns the following:

a) Has the name: Returns a list of tuples with the information about the players that have a defined name or

last name (1 or 2)

b) Lefty-Chileans: Returns a list of tuples with the information about all the lefty players from Chile.

c) Ages: Returns a list of tuples with the format (names, last_name_1, age) of every player. For

simplicity, just use the year of birth to calculate the age.

d) Sub-17: Returns a list of tuples with the format (names, last_name_1) if every players that have

17 years old or less (hint: use the previous result).

e) Top Scorer: Returns a tuple with all the information from the top scorer player. You can assume that

exists just one top scorer.

132 CHAPTER 3. FUNCTIONAL PROGRAMMING

f) Highest obesity risk: Returns a tuple with the format (names, last_name_1, high_cm,

weight_kg, bmi). Where bmi is the body mass index, calculated as the body mass divided by

the square of the body height (kg/m2)

Using all the coded functions, print the results of all the queries.

Activity 3.3

The owner of a hamburger store wants you to implement an upgrade for the current production management system.

They have the main class that models each product; you have to create a decorator for that class such that you save

every newly created instance in a list (belonging to that class) called instances.

The upgrade has to allow the system to compare the produced hamburgers according to a customizable attribute that

may vary in the future. Your goal is to include a decorator called compare_by that receives as a parameter the name

of the attribute used for the comparison, such that it allows for comparing instances. We have to make all the possible

comparisons though the operators: <, >, =, , �. For example, hamburger1 > hamburger2 returns True if

the attribute specified in the decorator for hamburger1 is higher than the same attribute in hamburger2.

The current function used by the management system to calculate the final price uses a fix tax value. However, The

Government will change the tax percentage in the future from 19% to 23%. Your upgrade should also change the

way the system calculates the amount of the tax applied to each sale. Unfortunately, the function cannot be directly

modified. Therefore, one of the most suitable solutions is to change the behavior of the function using a decorator,

called change_tax.

Tips and examples

• Retrieving and modifying attributes

You can use getattr and setattr to retrieve and to update the attributes of an object.

1 # Access

2 old_value = getattr(object, 'attribute_name')

3 # Modify

4 setattr(object, 'attribute_name', new_value)

• Decorating a class

The following example shows a decorator that modifies a class method such that it prints out a message every

time we call it.

3.3. HANDS-ON ACTIVITIES 133

1 def call_alert(method_name):

2 def _decorator(cls):

3 method = getattr(cls, method_name)

4

5 def new_method(*args, **kwargs):

6 print('Calling the method!')

7 return method(*args, **kwargs)

8

9 setattr(cls, method_name, new_method)

10 return cls

11

12 return _decorator

13

14 #Here we apply it to a test class:

15 @call_alert('walk')

16 class Test:

17 def walk(self):

18 return 'I am walking'

19

20 if __name__ == "__main__":

21 t = Test()

22 print(t.walk())

The following script shows the current production management system used by the store. Add your decorators at the

beginning and then, decorate the class Hamburger and the function price_after_tax:

1 class Hamburger:

2

3 def __init__(self, high, diameter, meat_quantity):

4 self.high = high

5 self.diameter = diameter

6 self.meat_quantity = meat_quantity

7

8 def __repr__(self):

9 return ('Hamburger {0} cms high, '

10 '{1} cm of diameter and '

134 CHAPTER 3. FUNCTIONAL PROGRAMMING

11 '{2} meat quantity').format(self.high, self.diameter,

12 self.meat_quantity)

13

14 def price_after_tax(price_before_tax):

15 return (price_before_tax * 1.19 + 100)

16

17

18 if __name__ == "__main__":

19 hamburger1 = Hamburger(10, 15, 2)

20 hamburger2 = Hamburger(7, 10, 3)

21 hamburger3 = Hamburger(10, 9, 2)

22

23 print(hamburger2 > hamburger1)

24 print(hamburger2 == hamburger3)

25 print(hamburger1 < hamburger3)

26

27 print(Hamburger.instances)

28 hamburger4 = Hamburger(12, 20, 4)

29 print(Hamburger.instances)

30 print(price_after_tax(2000))

