
Chapter 2

Data Structures

We define a data structure as a specific way to group and manage the information, such that we can efficiently use the

data. Opposite to the simple variables, a data structure is an abstract data type that involves a high level of abstraction,

and therefore a tight relation with OOP. We will show the Python implementation of every data structure according to

its conceptual model. Each data structure depends on the problem’s context and design, and the expected efficiency

of our algorithm. In conclusion, choosing the right data structure impacts directly on the outcome of any software

development project.

In Python, we could create a simple data structure by using an empty object without methods and add the attributes

along with our program. However, using empty classes is not recommended, because:

• i) it requires a lot of memory to keep tracked all the potentially new attributes, names, and values.

• ii) it decreases the maintainability of the code.

• iii) it is an overkill solution.

The example below shows the use of the pass sentence to let the class empty, which corresponds to a null operation.

We commonly use the pass sentence when we expect the method to be defined later. Once we create the object, we

can add more attributes.

1 # We create an empty class

2 class Video:

3 pass

4

5 vid = Video()



46 CHAPTER 2. DATA STRUCTURES

6

7 # We add new attributes

8 vid.ext = 'avi'

9 vid.size = '1024'

10

11 print(vid.ext, vid.size)

avi 1024

We can also create a class only with few attributes, but still without methods. Python allows us to add new attributes to

our class on the fly.

1 # We create a class with some attributes

2 class Image:

3

4 def __init__(self):

5 self.ext = ''

6 self.size = ''

7 self.data = ''

8

9

10 # Create an instance of the Image class

11 img = Image()

12 img.ext = 'bmp'

13 img.size = '8'

14 img.data = [255, 255, 255, 200, 34, 35]

15

16 # We add this new attribute dynamically

17 img.ids = 20

18

19 print(img.ext, img.size, img.data, img.ids)

bmp 8 [255, 255, 255, 200, 34, 35] 20

Fortunately, Python has many built-in data structures that let us manage data efficiently, such as: list, tuples,

dictionaries, sets, stacks, and queues.



2.1. ARRAY-BASED DATA STRUCTURES 47

2.1 Array-Based Data Structures

In this section, we will review a group of data structures based on the sequential order of their elements. These kinds

of structures are indexed through seq[index]. Python uses an index format that goes from 0 to n� 1, where n is

the number of elements in the sequence. Examples of this type of structures are: tuple and list.

Tuples

Tuples are useful for handling ordered data. We can get a particular element inside the tuple by using its index:

Figure 2.1: Diagram of indexing on tuples. Each cell contains a value of the tuple that could be referenced using its
index. In Python, indices go from 0 until n� 1, where the tuple has length n.

Tuples can handle various kind of data types. We can create a tuple using the tuple constructor as follows:

tuple(element0, element1, . . . , elementn�1). We can create a empty tuple using tuple() without arguments:

a = tuple(). We can also create a tuple by directly adding the tuple elements:

1 b = (0, 1, 2)

2 print(b[0], b[1])

0 1

A tuple can handle various data types. The parentheses are not mandatory during its creation:

1 c = 0, 'message'

2 print(c[0], c[1])

0 message

We can also add any object to the tuple:

1 teacher = ('Christian', '23112436-0', 2)

2 video = ('data-structures.avi', 1024, 'mp4')

3 entry = (1, teacher, video)

4 print(entry)



48 CHAPTER 2. DATA STRUCTURES

(1, (’Christian’, ’23112436-0’, 2), (’data-structures.avi’, 1024, ’mp4’))

Tuples are immutable, i.e, once we create a tuple, it is not possible to add, remove or change elements of the tuple.

This immutability allows us to use tuples as a key value in hashing-based data structures, such as dictionaries. In

the next example, we create a tuple with three elements: an instance of the class Image, a string, and a float.

Then, we attempt to change the element in position 0 by a string. We can see that this attempt raise a TypeError

exception:

1 a = ('this is' , 'a tuple', 'of strings')

2 a[1] = 'new data'

Traceback (most recent call last):

File "05_tuple_inmutable.py", line 2, in <module>

a[1] = ’new data’

TypeError: ’tuple’ object does not support item assignment

We can map tuples into a set of individual variables. For example, if a function returns a tuple with several values,

the tuple can be assigned separately to a set of individual variables. The code below shows an example, the function

compute_geometry() receives as input the sides a and b of a quadrilateral and returns a set of geometric measures:

1 def compute_geometry(a, b):

2 area = a * b

3 perimeter = (2 * a) + (2 * b)

4 mpa = a / 2

5 mpb = b / 2

6

7 return (area, perimeter, mpa, mpb)

8

9 data = compute_geometry(20.0, 10.0)

10 print('1: {0}'.format(data))

11

12 a = data[0]

13 print('2: {0}'.format(a))

14

15 # Here we unpack the values into independent variables contained

16 # in the tuple

17 a, p, mpa, mpb = data



2.1. ARRAY-BASED DATA STRUCTURES 49

18 print('3: {0}, {1}, {2}, {3}'.format(a, p, mpa, mpb))

19 a, p, mpa, mpb = compute_geometry(20.0, 10.0)

20 print('4: {0}, {1}, {2}, {3}'.format(a, p, mpa, mpb))

1: (200.0, 60.0, 10.0, 5.0)

2: 200.0

3: 200.0, 60.0, 10.0, 5.0

4: 200.0, 60.0, 10.0, 5.0

We can use slice notation to select a section of the tuple. In this notation, indexes do not correspond directly to the

element positions in the sequence, but they work as boundaries to indicate sequence[start:stop:steps]. As

a default, steps = 1. Figure 2.2 shows an example.

Figure 2.2: Slicing example. Python allows selecting a portion of a tuple or a list using the slice notation. Opposite to
a single indexing, slicing start at 0 until n, where n is the length of the sequence.

1 data = (400, 20, 1, 4, 10, 11, 12, 500)

2 a = data[1:3]

3 print('1: {0}'.format(a))

4 a = data[3:]

5 print('2: {0}'.format(a))

6 a = data[:5]

7 print('3: {0}'.format(a))

8 a = data[2::2]

9 print('4: {0}'.format(a))

10 #We can revert a sequence:

11 a = data[::-1]

12 print('5: {0}'.format(a))



50 CHAPTER 2. DATA STRUCTURES

1: (20, 1)

2: (4, 10, 11, 12, 500)

3: (400, 20, 1, 4, 10)

4: (1, 10, 12)

5: (500, 12, 11, 10, 4, 1, 20, 400)

Named Tuples

Named Tuples let us define a name for each position of the data. They are useful to group elements. First, we require

to import the module namedtuple from library collections. Then, we need to define an object with the tuple attribute

names:

1 from collections import namedtuple

2

3 # name of tuple type (defined by user) and tuple attributes

4 Register = namedtuple('Register', 'ID_NUMBER name age')

5 c1 = Register('13427974-5', 'Christian', 20)

6 c2 = Register('23066987-2', 'Dante', 5)

7 print(c1.ID_NUMBER)

8 print(c2.ID_NUMBER)

13427974-5

23066987-2

Functions can also return Named Tuples:

1 from collections import namedtuple

2

3 def compute_geometry(a, b):

4 Features = namedtuple('Geometrical', 'area perimeter mpa mpb')

5 area = a*b

6 perimeter = (2*a) + (2*b)

7 mpa = a/2

8 mpb = b/2

9 return Features(area, perimeter, mpa, mpb)

10

11 data = compute_geometry(20.0, 10.0)

12 print(data.area)



2.1. ARRAY-BASED DATA STRUCTURES 51

200.0

Lists

This data structure allows us to manage multiple instances of the same type of object, although, they are not limited to

combine various type of object classes. Lists are sequential data structures, sorted according to the order we add its

elements. Opposite to tuples, lists are mutable, i.e, their content can dynamically change after their creation.

We must avoid using lists to collect various attributes of an object or using them as vectors in C++, for example

as a histogram of words frequency [’python’, 20, ’language’, 16]. This way requires an algorithm to

access the data inside the list that makes hard use it. In these cases, we must prefer another data structure such as

hashing-based data structures, NamedTuples, or simply a dictionary.

1 # An empty list. We add elements one-by-one

2 # In this case we add tuples

3 le = []

4 le.append((2015, 3, 14))

5 le.append((2015, 4, 18))

6 print(le)

7

8 # We can also explicitly assign values during creation

9 l = [1, 'string', 20.5, (23, 45)]

10 print(l)

11

12 # We can retrieve an element using their index

13 print(l[1])

[(2015, 3, 14), (2015, 4, 18)]

[1, ’string’, 20.5, (23, 45)]

string

A useful lists method is extend() that allows us to add a complete list to other list already created.

1 # We create a list with 3 elements

2 songs = ['Addicted to pain', 'Ghost love score', 'As I am']

3 print(songs)

4

5 # Then, we add the list "songs" to the list "new_songs"



52 CHAPTER 2. DATA STRUCTURES

6 new_songs = ['Elevate', 'Shine']

7 songs.extend(new_songs)

8 print(songs)

[’Addicted to pain’, ’Ghost love score’, ’As I am’]

[’Addicted to pain’, ’Ghost love score’, ’As I am’, ’Elevate’, ’Shine’]

We can also insert elements at specific positions within the list using the method insert(position, element).

1 # We create a list with 3 elements

2 songs = ['Addicted to pain', 'Ghost love score', 'As I am']

3 print(songs)

4

5 # Then, we insert a new songs at the position 1

6 songs.insert(1, 'Sober')

7 print(songs)

[’Addicted to pain’, ’Ghost love score’, ’As I am’]

[’Addicted to pain’, ’Sober’, ’Ghost love score’, ’As I am’]

In addition, we can ask for an element using the index or retrieve a portion of the list using slicing notation. Here we

show some examples:

1 # We can take a slice

2 numbers = [6,7,2,4,10,20,25]

3 print(numbers[2:6])

[2, 4, 10, 20]

1 # We can pick a portion until the end

2 print(numbers[2::])

[2, 4, 10, 20, 25]

1 # We can take a slice from the beginning until a specific position

2 print(numbers[:5])

[6, 7, 2, 4, 10]



2.1. ARRAY-BASED DATA STRUCTURES 53

1 # We can also change the number of steps

2 print(numbers[:5:2])

[6, 2, 10]

1 # We can revert a list

2 print(numbers[::-1])

[25, 20, 10, 4, 2, 7, 6]

Lists can be sorted using the method sort(). This method sorts the list in place i.e, does not return any value.

1 # We create the list with seven numbers

2 numbers = [6, 7, 2, 4, 10, 20, 25]

3 print(numbers)

4

5 # Ascendence. Note that variable a do not receive

6 # any value from assignation.

7 a = numbers.sort()

8 print(numbers, a)

9

10 # Descendent

11 numbers.sort(reverse=True)

12 print(numbers)

[6, 7, 2, 4, 10, 20, 25]

[2, 4, 6, 7, 10, 20, 25] None

[25, 20, 10, 7, 6, 4, 2]

Lists are optimized to be flexible and easy to manage. They are easy to use within for loops. Note that we avoid

using id as a variable because it is a reserved word in Python language.

1 class Piece:

2 # Avoid using id as variable because it is a reserved word

3 pid = 0

4

5 def __init__(self, piece):

6 Piece.pid += 1



54 CHAPTER 2. DATA STRUCTURES

7 self.pid = Piece.pid

8 self.type = piece

9

10 pieces = []

11 pieces.append(Piece('Bishop'))

12 pieces.append(Piece('Pawn'))

13 pieces.append(Piece('King'))

14 pieces.append(Piece('Queen'))

15

16 for piece in pieces:

17 print('pid: {0} - types of piece: {1}'.format(piece.pid, piece.type))

pid: 1 - types of piece: Bishop

pid: 2 - types of piece: Pawn

pid: 3 - types of piece: King

pid: 4 - types of piece: Queen

Stacks

Stacks are a data structures that manage the elements using the Last-in First-out (LIFO) principle. When we add

elements, they are located on top of the stack. When we remove elements from it, we take the most recently added

element. The Figure 2.3 shows an analogy between stacks and a pile of clean dishes. The last added dish will be the

first dish to be used.

Item 𝒏
Item 𝒏 − 𝟏

…

Item 2

Item 1

Last In First Out

Item 𝒏 − 𝟏
…

Item 3

Item 2

Item 1

Item 𝑛Item 𝑛

Push Pop

Figure 2.3: Here we show the analogy between stacks and a pile of dishes. The push() method add an element to
the top of the pile. The pop() method let us to get the last element added to the stack.

Stacks have two main methods: push() and pop(). The push() method allows us to add an element to the end

of the stack and the pop() let us to get the top element in the stack. In Python, the stacks are built-in as Lists.



2.1. ARRAY-BASED DATA STRUCTURES 55

There are also more methods, such as: top(), is_empty(), len(). Figure 2.4 includes a brief description and

comparison of the other methods included in this data structure.

Basics Methods for Stacks Python Implementation Description

Stack.push(item) List.append(item) Add sequentialy a new item to the stack

Stack.pop() List.pop() Returns and removes the last item added to the
stack

Stack.top() List[-1] Return the last ítem added to stack without
remove it

len(Stack) len(List) Return the total number of items in the stack

Stack.is_empty() len(List) == 0 Verify whether the stack is empty or not

Figure 2.4: Summary of most used methods of the stack data structure and its equivalence in Python.

Methods described in Figure 2.4 work as follows:

1 # Create an empty Stack. In Python Stacks are built-in as Lists.

2 stack = []

3

4 # push() method

5 stack.append(1)

6 stack.append(10)

7 stack.append(12)

8

9 print(stack)

10

11 # pop() method

12 stack.pop()

13 print('pop(): {0}'.format(stack))

14

15 # top() method. Lists does not have a this method implemented directly.

16 #We can have the same behaviour indexing the last element in the Stack.

17 stack.append(25)

18 print('top(): {0}'.format(stack[-1]))

19

20 # len()

21 print('The stack have {0} elements'.format(len(stack)))

22



56 CHAPTER 2. DATA STRUCTURES

23 # is_empty() method. In Python we verify the status of the stack

24 #checking if it has elements.

25 stack = []

26 if len(stack) == 0:

27 print('The stack is empty :(')

[1, 10, 12]

pop(): [1, 10]

top(): 25

The stack have 3 elements

The stack is empty :(

A practical example of stacks is the back button of web browsers. When we are browsing the internet, each time we

visit an URL, the browser add the link to a stack. Then, we can recover the last visited URL when we click on the

back button.

Url N
…
Url 3
Url 2

Url N-1

…

Url 2

Url 1

Push Pop

Url N

Url 1

Figure 2.5: An example of using Stacks in a web browser. We can recover the last visited URL every time we press
the back button of the browser.

1 class Browser:

2

3 def __init__(self, current_url='http://www.google.com'):

4 self.__urls_stack = []

5 self.__current_url = current_url

6

7 def __load_url(self, url):

8 self.__current_url = url



2.1. ARRAY-BASED DATA STRUCTURES 57

9 print('loading url: {0}'.format(url))

10

11 def go(self, url):

12 self.__urls_stack.append(self.__current_url)

13 print('go ->', end=' ')

14 self.__load_url(url)

15

16 def back(self):

17 last_url = self.__urls_stack.pop()

18 print('back->', end=' ')

19 self.__load_url(last_url)

20

21 def show_current_url(self):

22 print('Current URL: {0}'.format(self.__current_url))

23

24

25 if __name__ == '__main__':

26 chrome = Browser()

27 chrome.go('http://www.uc.cl')

28 chrome.go('http://www.uc.cl/en/courses')

29 chrome.go('http://www.uc.cl/es/doctorado')

30

31 chrome.show_current_url()

32 chrome.back()

33 chrome.show_current_url()

go -> loading url: http://www.uc.cl

go -> loading url: http://www.uc.cl/en/courses

go -> loading url: http://www.uc.cl/es/doctorado

Current URL: http://www.uc.cl/es/doctorado

back-> loading url: http://www.uc.cl/en/courses

Current URL: http://www.uc.cl/en/courses

Another practical example of stacks is sequence reversion. We show a simple implementation of this task in the next

example:

1 class Text:



58 CHAPTER 2. DATA STRUCTURES

2 def __init__(self):

3 self.stack = []

4

5 def read_file(self, filename):

6 print('input:')

7

8 with open(filename) as fid:

9 for line in fid:

10 print(line.strip())

11 self.stack.append(line.strip())

12

13 print()

14 fid.closed

15

16 def reverse_lines(self):

17 print('output:')

18

19 while len(self.stack) > 0:

20 print(self.stack.pop())

21

22

23 if __name__ == '__main__':

24 t = Text()

25 t.read_file('stacks_text.txt')

26 t.reverse_lines()

input:

he friend who can be silent with us in a moment of despair or confusion,

who can stay with us in an hour of grief and bereavement,

who can tolerate not knowing... not healing, not curing...

that is a friend who cares.

output:

that is a friend who cares.

who can tolerate not knowing... not healing, not curing...

who can stay with us in an hour of grief and bereavement,



2.1. ARRAY-BASED DATA STRUCTURES 59

he friend who can be silent with us in a moment of despair or confusion,

Queues

This data structure is an abstract data type that lets us collect objects sequentially following the rule First–in, First–out

(FIFO). When we add elements, we place them at the end of the queue. When we remove elements from it, we take the

oldest element in the queue. Various examples fit with the queue model, such as the line in a supermarket or incoming

calls in a call center.

Incomming

calls

Call N … Call 3 Call 2 Call 1

First-In

First-Out

Queue

Figure 2.6: A practical example of queues is a call center, where incoming requests wait until an operator can pick the
first call added to the queue.

In Python, lists do not work efficiently as queues. Fortunately, the collections library includes the deque module

that is an efficient implementation for data structures based on the FIFO model. This module manages single and

double ended queues, while executes all operations efficiently and memory safe. The deque module guarantees that

the memory access from both sides of the queue is O(1). Although lists support similar operations and methods like

queues, they are optimized to perform operations in fixed sized sequences. For example, operations that change the

length or position of the element in the sequences, such as pop(0) or insert(0,v), involve a cost to update de

memory registers of O(n). Queues have two primary methods: enqueue() that allows us to add elements to the

queue; and dequeue(), that returns and removes the first element in the queue. Figure 2.7 includes a brief summary

of other methods and operations of this data structure.

1 # The collection library includes the deque module that manages single queues

2 # or double ended queues efficiently

3 from collections import deque

4

5 # An empty queue

6 q = deque()

7



60 CHAPTER 2. DATA STRUCTURES

Basic Methods in Queues Python Implementation Description

Queue.enqueue(item) deque.append(item) Add an ítem to the queue

Queue.dequeue() deque.popleft() Returns and remove the first item in the queue

Queue.first() deque[1] Returns the first ítem in the queue without
remove it

len(Queue) len(deque) Returns the total number of elements in the
queue

Queue.is_empty() len(deque) == 0 Verify whether the queue is empty or not

Figure 2.7: Summary of used methods and operations in queues.

8 # We add some elements to the queue using append method, similar to lists.

9 q.append('orange')

10 q.append('apple')

11 q.append('pear')

12

13 # Print the queue

14 print(q)

15

16 # We extract the first element and print again the queue

17 print('Remove the item: {}'.format(q.popleft()))

18 print(q)

19

20 # Add a new element to the queue

21 q.append('strawberry')

22

23 # Get the first element

24 print('The first item is {}'.format(q[0]))

25

26 # len()

27 print('The queue have {0} elements'.format(len(q)))

28

29 # is_empty(). We first remove all the items in the queue using clear() method

30 # and the we check the number of elements.

31 q.clear()

32 if len(q) == 0:

33 print('The queue is empty')



2.1. ARRAY-BASED DATA STRUCTURES 61

deque([’orange’, ’apple’, ’pear’])

Remove the item: orange

deque([’apple’, ’pear’])

The first item is pear

The queue have 3 elements

The queue is empty

The code below shows a practical example of this data structure applied to vehicle inspection garages:

1 from collections import deque

2 from random import choice, randrange

3

4

5 class Vehicle:

6

7 # This class models the vehicles that upcoming to the plant and the

8 # average time spent during the test

9 tp = {'motorcycle': 10, 'car': 25, 'suv': 30}

10

11 def __init__(self):

12 self.vehicle_type = choice(list(Vehicle.tp))

13 self._testing_time = Vehicle.tp[self.vehicle_type]

14

15 @property

16 def testing_time(self):

17 return self._testing_time

18

19 @testing_time.setter

20 def testing_time(self, new_time):

21 self._testing_time = new_time

22

23 def show_type(self):

24 print('Testing: {0}'.format(self.vehicle_type))

25

26

27 class Plant:



62 CHAPTER 2. DATA STRUCTURES

28

29 # This class models the test plant

30

31 def __init__(self, vehicles_per_hour):

32 self.test_ratio = vehicles_per_hour

33 self.current_task = None

34 self.testing_time = 0

35

36 def busy(self):

37 return self.current_task != None

38

39 def next_vehicle(self, vehicle):

40 self.current_task = vehicle

41 self.testing_time = self.current_task.testing_time

42 self.current_task.show_type()

43

44 def tick(self):

45 if self.current_task != None:

46 self.testing_time = self.testing_time - 1

47 if self.testing_time <= 0:

48 self.current_task = None

49

50

51 def arrive_new_car():

52 # This function manage randomly if arrives a new vehicle

53 num = randrange(1, 201)

54 return num == 200

55

56

57 def testing():

58

59 # This function manage the testing process

60

61 # We createa a Plant with capacity of 5 vehicles/hour

62 plant = Plant(5)



2.1. ARRAY-BASED DATA STRUCTURES 63

63

64 # Then, we create an empty queue

65 q = deque()

66

67 # Waiting time

68 time_list = []

69

70 # We model arriving vehicles randomly

71 for instant in range(1000):

72

73 if arrive_new_car():

74 v = Vehicle()

75 q.append(v)

76

77 if (not plant.busy()) and (len(q) > 0):

78 # We get the next vehicle in the queue

79 next_vehicle = q.popleft()

80 time_list.append(next_vehicle.testing_time)

81 plant.next_vehicle(next_vehicle)

82

83 # We make time pass by one tick

84 plant.tick()

85

86 average_time = sum(time_list) / len(time_list)

87 print(

88 'Average waiting time: {0:6.2f} min, {1} vehicles queued.'.format(

89 average_time,

90 len(time_list))

91 )

92

93

94 if __name__ == '__main__':

95 testing()

Testing: suv

Testing: motorcycle



64 CHAPTER 2. DATA STRUCTURES

Testing: motorcycle

Testing: motorcycle

Testing: suv

Testing: motorcycle

Testing: suv

Average waiting time: 18.57 min, 7 vehicles queued.

Double Ended Queue (Deque)

The double ended queue data structure is the general case of stack and queue, which allows us to add and remove

items from both sides of the structure. This flexibility is useful for modeling real problems where the entities have a

different frequency for arrival and attention. This difference originates that some objects leave the queue early. A real

example is a call center that receives incoming calls with different priorities and others calls finish abruptly.

Figure 2.8: Example of using a double ended queues.

Similar to queues, we create a deque structure using the deque module included in the collections library. The table

in Figure 2.9 shows a summary of the basic methods and operations of a deque.

1 from collections import deque

2

3 # We create an empty deque and item by item

4 d = deque()

5 d.append('r')

6 d.append('a')

7 d.append('d')

8 d.append('a')

9 d.append('r')

10 d.append('e')



2.1. ARRAY-BASED DATA STRUCTURES 65

Collection.deque Python Implementation Description

Deque.add_first(item) Deque.appendleft(item) Add an item at the begining of the deque

Deque.add_last(item) Deque.append(item) Add an item at the end of the deque

Deque.delete_first() Deque.popleft() Returns and removes the first ítem

Deque.delete_last() Deque.pop() Returns and remove the last item

Deque.first() Deque[0] Returns the first item without extract it

Deque.last() Deque[-1] Returns the last item without extract it

len(Deque) len(Deque) Returns the total number of ítems in the
deque

Deque.is_empty() len(Deque) == 0 Verify whether the deque is empty or not

Deque[j] Access to the item j

Deque[j] = value Modify the item j

Deque.clear() Delete all the ítems

Deque.rotate(k) K step circular scrolling

Deque.remove(e) Remove the first item that match to e

Deque.count(e) Counts the number of items that match to e

Figure 2.9: Brief summary of the basic deque methods in python.

11 d.append('s')

12

13 print(d)

14 print(len(d))

deque([’r’, ’a’, ’d’, ’a’, ’r’, ’e’, ’s’])

7

1 # Next, we check the first and the last items

2 print(d[0], d[-1])

r s

1 # Then, we rotate the deque in k=3 step

2 d.rotate(3)

3 print(d)

deque([’r’, ’e’, ’s’, ’r’, ’a’, ’d’, ’a’])

1 # Finally, we extract the first and the last items

2 first = d.popleft()

3 last = d.pop()

4



66 CHAPTER 2. DATA STRUCTURES

5 print(first, last)

6 print(d)

r a

deque([’e’, ’s’, ’r’, ’a’, ’d’])

Next, a simple example of the use of a deque for palindrome detection. The word is saved in a deque, while we

iteratively remove and compare the first and the last characters.

1 from collections import deque

2

3

4 class Word:

5

6 def __init__(self, word=None):

7 self.word = word

8 self.characters = deque(self.word)

9

10 def is_palindrome(self):

11 if len(self.characters) > 1:

12 return self.characters.popleft() == self.characters.pop() \

13 and Word(''.join(self.characters)).is_palindrome()

14 else:

15 return True

16

17 p1 = Word("radar")

18 p2 = Word("level")

19 p3 = Word("structure")

20

21 print(p1.is_palindrome())

22 print(p2.is_palindrome())

23 print(p3.is_palindrome())

True

True

False



2.1. ARRAY-BASED DATA STRUCTURES 67

Note: In Python, if we want to check whether a word is a palindrome or not, we only need to compare word ==

word[::-1].

Dictionaries

A dictionary is a data structure based on key–value associations. This relation allows us to use the key to efficiently

search an item because it points to the memory address where its associated value is located.

Keys

Values

Chile Peru Spain Holland Brazil

Chilean

Peso

Peruvian

Sol

Euro Real

Figure 2.10: Example of a dictionary. Every key is unique in the dictionary.

In Python, an empty dictionary is created by braces {} or dict(). We must specify the key and value using colon :,

i.e, {key1: value1, key2: value2, ...}. The key has to be an inmutable object: int, str, tuple,

etc. We can access the value using the key within brackets. The next example shows how we create a dictionary:

1 dogs = {'bc': 'border-collie', 'lr': 'labrador retriever', 'pg': 'pug'}

2 telephones = {23545344: 'John', 23545340: 'Trinity', 23545342: 'Taylor'}

3 tuples = {('23545344', 0): 'office', ('2353445340', 1): 'admin'}

4

5 print(dogs)

6 print(tuples)

7

8 # We access directly to the value using its key

9 print(dogs['bc'])

10 print(telephones[23545344])

{’bc’: ’border-collie’, ’lr’: ’labrador retriever’, ’pg’: ’pug’}

{(’2353445340’, 1): ’admin’, (’23545344’, 0): ’office’}

border-collie

John



68 CHAPTER 2. DATA STRUCTURES

In the next example, we can see that dictionaries are not a sorted sequence like tuples or list; and that the key can even

be of various types within the same dictionary.

1 d = {1: 'first key', '2': 'second key', 23.0: 'third key',

2 (23, 5): 'fourth key'}

3 print(d)

{1: ’first key’, (23, 5): ’fourth key’, ’2’: ’second key’,

23.0: ’third key’}

Dictionaries are mutable data structures, i.e, its content can change through the execution of a program. There are

two behaviors when we assign a value to key: 1) if the key does not exist, Python creates the key in the dictionary and

assigns the value; and 2) if the key already exists, Python assigns the new value.

1 # If a key does not exist, Python creates a new one and assigns the value

2 dogs['te'] = 'terrier'

3 print(dogs)

4

5 # If the key already exist, Python just assigns the value

6 dogs['pg'] = 'pug-pug'

7 print(dogs)

{’bc’: ’border-collie’, ’lr’: ’labrador retriever’, ’te’: ’terrier’,

’pg’: ’pug’}

{’bc’: ’border-collie’, ’lr’: ’labrador retriever’, ’te’: ’terrier’,

’pg’: ’pug’}

We can also remove items directly from a dictionary by using the del sentence. For example:

1 # We remove items using del

2 del dogs['te']

3 print(dogs)

{’bc’: ’border-collie’, ’lr’: ’labrador retriever’, ’pg’: ’pug-pug’}

We can check whether a given key exists in a dictionary by using the in statement. By default, every time we use this

sentence directly with the name of the dictionary, Python assumes that we refer to its list of keys. The result of using

in is True if the required key exists in the dictionary keys, and False otherwise:



2.1. ARRAY-BASED DATA STRUCTURES 69

1 # The sentence in checks whether exist a specific key in the dictionary

2 print('pg' in dogs)

3 print('te' in dogs)

True

False

Similarly, dictionaries have the get() method that allows us to check whether a key exist or not. This method

requires two parameters: the key and a default value for missing keys. We can use any Python object as a default value.

1 # The method get() checks whether a key exists or not.

2

3 print(dogs.get('pg', False)) # logical value as default

4 print(dogs.get('te', 2)) # int value as default

5 print(dogs.get('te', 'The dog does not exist')) # String value as default

True

False

pug-pug

This verification is useful when we need to build a dictionary during the execution of our program, such as we show in

the following example:

1 # A string to be verified and a empty dictionary to count vowels

2 msg = 'supercalifragilisticexpialidocious'

3 vowels = dict()

4

5 for v in msg:

6 if v not in 'aeiou': # check wheter v is vowel or not

7 continue

8

9 # If v exist, add a key named as v initialized at 0

10 if v not in vowels:

11 vowels[v] = 0

12

13 # If v alread exist, increase the counter

14 vowels[v] += 1

15



70 CHAPTER 2. DATA STRUCTURES

16 print(vowels)

{’i’: 7, ’a’: 3, ’o’: 2, ’e’: 2, ’u’: 2}

There are three useful methods that let us to retrieve the dictionary contents at different levels. These methods are:

keys(), values(), and items(). The example below shows the results of using these methods and their outputs:

1 currency = {'Chile': 'Peso', 'Brazil': 'Real',

2 'Peru': 'Sol', 'Spain': 'Euro', 'Italy': 'Euro'}

3

4 print(currency.keys()) # returns a list with the keys

5 print(currency.values()) # returns a list with the values

6 print(currency.items()) # returns a list of tuples key-value

dict_keys([’Chile’, ’Spain’, ’Italy’, ’Peru’, ’Brazil’])

dict_values([’Peso’, ’Euro’, ’Euro’, ’Sol’, ’Real’])

dict_items([(’Chile’, ’Peso’), (’Spain’, ’Euro’), (’Italy’, ’Euro’),

(’Peru’, ’Sol’), (’Brazil’, ’Real’)])

The methods keys(), values(), and items() described above are completely suitable during iteration over

dictionaries. By default, when we use a for loop to iterate over a dictionary Python iterates directly over the keys. In

each iteration the local variable takes a key value in the list.

1 # Iteration over a dictionary

2

3 # By default Python iterates directly over the keys

4 print('This dictionary has the following keys:')

5

6 for k in currency:

7 print('{0}'.format(k))

This dictionary has the following keys:

Chile

Spain

Italy

Peru

Brazil

Or we can also use the method keys() explicitly



2.1. ARRAY-BASED DATA STRUCTURES 71

1 # Although we can also use the method keys()

2 print('This dictionary has the following keys:')

3

4 for k in currency.keys():

5 print('{0}'.format(k))

This dictionary has the following keys:

Chile

Spain

Italy

Peru

Brazil

The method values() allows us to iterate over the list of values associated to each key.

1 # We use the method values() when we want to iterates using the values

2 print('The values in the dictionary:')

3 for v in currency.values():

4 print('{0}'.format(v))

The values in the dictionary:

Peso

Euro

Euro

Sol

Real

Finally, the method items() provide us with a way to iterate using the pair key-value.

1 # The method items() allows us to retrieve a tuple (key, value)

2 print('The pairs key-value:')

3

4 for k, v in currency.items():

5 print('the currency in {0} is {1}'.format(k, cv))

The pairs key-value:

the currency in Chile is Peso

the currency in Spain is Euro



72 CHAPTER 2. DATA STRUCTURES

the currency in Italy is Euro

the currency in Peru is Sol

the currency in Brazil is Real

Defaultdicts

Python provide us with a special case of dictionary called defaultdicts that allows us to assign a default value

to the nonexistent keys. This type of dictionary is part of the collections library and let us to save time writing

line codes to manage the cases when our code tries to access a nonexistent keys. The defaultdics accept also a

function as default value, which can receive an action and return any object as key in the dictionary. For example,

suppose we want to create a dictionary where each new key has as value a list with a string indicating the current

number of items in the dictionary.

1 from collections import defaultdict

2

3 num_items = 0

4

5 def my_function():

6 global num_items

7 num_items += 1

8 return ([str(num_items)])

9

10 d = defaultdict(my_function)

11

12 print(d['a'])

13 print(d['b'])

14 print(d['c'])

15 print(d['d'])

16 print(d)

[’1’]

[’2’]

[’3’]

[’4’]

defaultdict(

<function my_function at 0x000000000295CBF8>,



2.1. ARRAY-BASED DATA STRUCTURES 73

{’d’: [’4’], ’b’: [’2’], ’c’: [’3’], ’a’: [’1’]})

Sets

A set is a data structure that contains an unordered collection of unique and immutable objects. For example: imagine

that we have a list that contains a collection of tuples of items (song, artist) where different songs may be

associated with the same artist, and we would like to build a list of all unique artists in our library. To do so, we may

create a new list and for each item in the collection check if we already added the artist to the new list. That iteration is

inefficient. Sets provide us with a way to do this task easily because the data structures make sure that each item in the

set is unique even if we add the same item again.

Python requires that the sets contain hashable objects, i.e, an immutable object that has a hash value registered in the

__hash__() method. This values never changes during its lifetime and can be compared to other objects. Hashable

objects have the advantage that they can be used as keys in dictionaries.

1 songs_list = [("Uptown Funk", "Mark Ronson"),

2 ("Thinking Out Loud", "Ed Sheeran"),

3 ("Sugar", "Maroon 5"),

4 ("Patterns In The Ivy", "Opeth"),

5 ("Take Me To Church", "Hozier"),

6 ("Style", "Taylor Swift"),

7 ("Love Me Like You Do", "Ellie Goulding")]

8

9 artists = set()

10

11 for song, artist in songs_list:

12 # The add() method append a new item to the set. We do not require to

13 # check whether the item exist or not previously in the set.

14 artists.add(artist)

15

16 print(artists)

{’Mark Ronson’, ’Opeth’, ’Hozier’, ’Ed Sheeran’, ’Maroon 5’, ’Taylor Swift’,

’Ellie Goulding’}

We also can build a set using brackets, where a coma must separate the items. An empty set has to be created with the

set() statement, otherwise a dictionary will be created.



74 CHAPTER 2. DATA STRUCTURES

1 # We can create a set using brackets including items separated by coma.

2 songs = {'Style', 'Uptown Funk', 'Take Me To Church', 'Sugar',

3 'Thinking Out Loud', 'Patterns In The Ivy', 'Love Me Like You Do'}

4

5 print(songs)

6 print('Sugar' in songs)

7

8 for artist in artists:

9 print("{} plays excellent music".format(artist))

{’Patterns In The Ivy’, ’Take Me To Church’, ’Sugar’, ’Love Me Like You Do’,

’Style’, ’Uptown Funk’, ’Thinking Out Loud’}

True

Mark Ronson plays excellent music

Opeth plays excellent music

Hozier plays excellent music

Ed Sheeran plays excellent music

Maroon 5 plays excellent music

Taylor Swift plays excellent music

Ellie Goulding plays excellent music

Note that the results of the previous example show that the items in the set are unordered (similar to dictionaries). Sets

cannot be indexed to retrieve their items. We can build an ordered list from a set as follows:

1 # Build a list from a set

2 artists_list = list(artists)

3 artists_list.sort()

4 print(artists_list)

[’Ed Sheeran’, ’Ellie Goulding’, ’Hozier’, ’Mark Ronson’, ’Maroon 5’,

’Opeth’, ’Taylor Swift’]

Sets data structures behave as mathematical sets and provide us with the same mathematical operations.

1 # Mathematical Operations

2 my_artists = {

3 'Hozier', 'Opeth', 'Ellie Goulding', 'Mark Ronson', 'Taylor Swift'

4 }



2.1. ARRAY-BASED DATA STRUCTURES 75

5

6 artists_album = {'Maroon 5', 'Taylor Swift', 'Amy Wadge'}

7

8 print("All: {}".format(my_artists.union(artists_album)))

9 print("both: {}".format(artists_album.intersection(my_artists)))

All: {’Mark Ronson’, ’Opeth’, ’Hozier’, ’Taylor Swift’, ’Maroon 5’,

’Amy Wadge’, ’Ellie Goulding’}

both: {’Taylor Swift’}

1 # The A.difference(B) returns a set of items that exist only in A but

2 # not in B.

3 print("Only in A: {}".format(my_artists.difference(artists_album)))

Only in A: {’Ellie Goulding’, ’Mark Ronson’, ’Hozier’, ’Opeth’}

1 # The symmetric difference returns a set of items that exist only in

2 # one of the sets, but not both.

3 print("Any but not both: {}".format(my_artists.symmetric_difference(

4 artists_album)))

Any but not both: {’Mark Ronson’, ’Opeth’, ’Hozier’, ’Maroon 5’,

’Amy Wadge’, ’Ellie Goulding’}

1 # Operation Order

2 bands = {"Opeth", "Guns N' Roses"}

3

4 print("my_artist is to bands:")

5 print("issuperset: {}".format(my_artists.issuperset(bands)))

6 print("issubset: {}".format(my_artists.issubset(bands)))

7 print("difference: {}".format(my_artists.difference(bands)))

8

9 print("-" * 20)

10

11 print("bands is to my_artists:")

12 print("issuperset: {}".format(bands.issuperset(my_artists)))

13 print("issubset: {}".format(bands.issubset(my_artists)))

14 print("difference: {}".format(bands.difference(my_artists)))



76 CHAPTER 2. DATA STRUCTURES

my_artist is to bands:

issuperset: False

issubset: False

difference: {’Mark Ronson’, ’Taylor Swift’, ’Hozier’, ’Ellie Goulding’}

--------------------

bands is to my_artists:

issuperset: False

issubset: False

difference: {"Guns N’ Roses"}

In some methods, the arguments’ order does not matter, for example, my_artists.union(artists_album)

returns the same result that my_artist_album.union(my_artist). There are other methods where the

arguments’ order does matter, for example, issubset() and issuperset().

2.2 Node-based Data Structures

In this section, we describe a set of data structures based on a single and basic structure called node. A node allocates

an item and its elements and maintains one or more reference to neighboring nodes to represent more complex data

structures collectively. One relevant aspect of these complex structure is the way on how we walk through each node.

The traversal is the way to visit all the nodes in a node-base structure systematically. The following sections show

how to build and traverse two essentials node-based structures: linked lists and, trees.

Singly Linked List

This data structure is one of the primary node-based structure. In a linked list, a collection of nodes forms a linear

sequence where each node has a unique precedent and subsequent nodes. The first node is called head and the last

node is called tail. In this structure, nodes have references to their value and to the next element in the sequence.

Figure 2.11 shows a diagram of a linked list. In the tail node there is no reference to the next object.

The way to traverse a linked list is node-by-node recursively. Every time we get a node we have to pick the next one,

indicated with the next statement. The traverse stops when there are no more nodes in the sequence. The code below

shows how to build a linked list. Lines 21 to 31 show how to traverse the structure.



2.2. NODE-BASED DATA STRUCTURES 77

value next

Head Tail

value next value next…

Node Node Node

Figure 2.11: The simpler implementation of a linked list consists into a node that has two attributes: the value of the
node and a reference to the next node. We can put as many nodes as we require.



78 CHAPTER 2. DATA STRUCTURES

1 class Node:

2 # This class models the basic structure, the node.

3 def __init__(self, value=None):

4 self.next = None

5 self.value = value

6

7 class LinkedList:

8 # This class implement a singly linked list

9 def __init__(self):

10 self.tail = None

11 self.head = None

12

13 def add_node(self, value):

14 if not self.head:

15 self.head = Node(value)

16 self.tail = self.head

17 else:

18 self.tail.next = Node(value)

19 self.tail = self.tail.next

20

21 def __repr__(self):

22 rep = ''

23 current_node = self.head

24

25 while current_node:

26 rep += '{0}'.format(current_node.value)

27 current_node = current_node.next

28 if current_node:

29 rep += ' -> '

30

31 return rep

32

33 if __name__ == '__main__':

34 l = LinkedList()

35 l.add_node(2)



2.2. NODE-BASED DATA STRUCTURES 79

36 l.add_node(4)

37 l.add_node(7)

38

39 print(l)

2 -> 4 -> 7

Trees

Trees are one of the most important data structure in computer science. A tree is a collection of nodes structured

hierarchically. Opposite to the array-based structures (e.g. stacks and queues), the nodes that represent the items lay

ordered above and below according to the parent-child hierarchy. A tree has a top node called root that is the only

node that does not have a parent. Nodes other than the root have a single parent and one o more children. Children

nodes descending from the same parent are called siblings.

We say that a node a is an ancestor of node b if a is in the path from b to the root. Nodes that have no children

are called leaf nodes (sometimes called external). Nodes that are not the root or leaves are called internal nodes.

Recursively, every node can be the root of its subtree. Figure 2.12 shows a tree representation of the animal kingdom.

The root node has two children: Vertebrates and Invertebrates. The Invertebrates node has three children that are

siblings each other: mollusks, arthropod, and worms. The node Annelids is a leave node. Vertebrates can be a root

node of the subtree formed by its children.

Animal Kingdom

Vertebrates Invertebrates

Mollusks Arthropods AnnelidsFishes Mammals

Insects ArachnidsBony
Fihes

Cartilaginous
Fishes

Root node

Parent node

Children node

Leaf nodesLeaf nodes

Figure 2.12: An example of a tree structure to represent the Animal Kingdom shows a tree representation of the animal
kingdom. According to the definition, the root node has no a parent node. All the internal nodes have a parents-child
relationship. The leaf nodes have no children. Every node can be the root of its own subtree, e.g, Fishes.

An edge connects a pair of nodes (u, v) that have a parent-child relationship. Each node has a unique incoming edge

(parent) and zero or various outgoing edges (children). An ordered sequence of consecutive nodes joint by a set of



80 CHAPTER 2. DATA STRUCTURES

edges from a starting node to a destination node through the tree form a path. In the same Figure 2.12, there are two

edges that connect the node Fishes with its children Bony and Cartilaginous. The set of edges from Bony to Animals

form the path Animals-Vertebrates-Fishes-Bony.

The depth of a node b is the number of levels or ancestors that exist between b and the root node. The height of a tree

is the number of levels in the tree, or the maximum depth reached among the leaf nodes. As shown in Figure 2.12, the

Fishes node has depth 2, and the height of the tree is 3.

Binary Tree

Binary trees are among the most used tree structures in computer science. In a binary tree, each node has a maximum

number of two children; each child node has a label: left- child and right-child, and regarding precedence, the left

child precedes the right child.

In binary trees, the number of nodes grows exponentially with depth. Let d be the level of an binary tree T defined as

the set of nodes located at the same depth d. At the level d = 0 there is at least only one node (the root). The level

d = 1 has at least two nodes, and so on. At any level d, the tree has a maximum number of 2d levels. The special case

when every node has two children is know as a complete tree.

Level

0

1

2

3

Figure 2.13: An example of a binary tree. As we can see, the node 0 is the root of the tree. For this example, we adopt
the convention of setting the numbers while traversing the tree in amplitude.

A practical example of binary trees is decision trees. In this kind of trees, each interior node and the root represent a

query, and their outgoing edges represent the possible answers. Another example is expression trees; they represent

arithmetic operations where variables correspond to leaf nodes and operators to interior nodes.



2.2. NODE-BASED DATA STRUCTURES 81

Linked Structure Based Binary Tree

The linked structure based binary tree correspond to the recursive version for binary trees. Each node of the tree is an

object where each attribute is a reference to the parent node, children nodes, and its value. We use None to indicate

that an attribute does not exist. For example, if we write the root node, the attribute parent is equal to None. Now

we show the implementation of a binary tree using a linked structure:

1 class Node:

2

3 def __init__(self, value, parent=None):

4 self.value = value

5 self.parent = parent

6 self.left_child = None

7 self.right_child = None

8

9 def __repr__(self):

10 return 'parent: {0}, value: {1}'.format(self.parent, self.value)

11

12

13 class BinaryTree:

14

15 def __init__(self, root_node=None):

16 self.root_node = root_node

17

18 def add_node(self, value):

19 if self.root_node is None:

20 self.root_node = Node(value)

21 else:

22 temp = self.root_node

23 added = False

24

25 while not added:

26 if value <= temp.value:

27 if temp.left_child is None:

28 temp.left_child = Node(value, temp.value)

29 added = True



82 CHAPTER 2. DATA STRUCTURES

30

31 else:

32 temp = temp.left_child

33

34 else:

35 if temp.right_child is None:

36 temp.right_child = Node(value, temp.value)

37 added = True

38

39 else:

40 temp = temp.right_child

41

42 def __repr__(self):

43 def traverse_tree(node, side="root"):

44 ret = ''

45

46 if Node is not None:

47 ret += '{0} -> {1}\n'.format(node, side)

48 ret += traverse_tree(node.left_child, 'left')

49 ret += traverse_tree(node.right_child, 'right')

50

51 return ret

52

53 return traverse_tree(self.root_node)

54

55

56 T = BinaryTree()

57 T.add_node(4)

58 T.add_node(1)

59 T.add_node(5)

60 T.add_node(3)

61 T.add_node(20)

62

63 print(T)

parent: None, value: 4 -> root



2.2. NODE-BASED DATA STRUCTURES 83

parent: 4, value: 1 -> left

parent: 1, value: 3 -> right

parent: 4, value: 5 -> right

parent: 5, value: 20 -> right

Binary Tree Traversal

In the following sections, we describe the three basic methods to traverse a binary tree: pre-order traversal, in-order

traversal, post-order traversal.

Pre-Order Traversal

In this method we first visit the root node and then its children recursively:

1 # 31_binary_trees_pre_order_traversal.py

2

3 class BinaryTreePreOrder(BinaryTree):

4 # We inherited the original class of our binary tree, and override the

5 # __repr__ method to traverse the tree using pre-order traversal.

6

7 def __repr__(self):

8 def traverse_tree(node, side="root"):

9 ret = ''

10

11 if node is not None:

12 ret += '{0} -> {1}\n'.format(node, side)

13 ret += traverse_tree(node.left_child, 'left')

14 ret += traverse_tree(node.right_child, 'right')

15

16 return ret

17

18 return traverse_tree(self.root_node)

19

20

21 if __name__ == '__main__':

22 # We add some nodes to the tree

23 T = BinaryTreePreOrder()



84 CHAPTER 2. DATA STRUCTURES

24 T.add_node(4)

25 T.add_node(1)

26 T.add_node(5)

27 T.add_node(3)

28 T.add_node(20)

29

30 print(T)

parent: None, value: 4 -> root

parent: 4, value: 1 -> left

parent: 1, value: 3 -> right

parent: 4, value: 5 -> right

parent: 5, value: 20 -> right

In-Order Traversal

In this method we first visit the left-child, then the root and finally the right-child recursively:

1 # 32_binary_trees_in_order_traversal.py

2

3 class BinaryTreeInOrder(BinaryTree):

4 # We inherited the original class of our binary tree, and override the

5 # __repr__ method to traverse the tree using pre-order traversal.

6

7 def __repr__(self):

8 def traverse_tree(node, side="root"):

9 ret = ''

10

11 if node is not None:

12 ret += traverse_tree(node.left_child, 'left')

13 ret += '{0} -> {1}\n'.format(node, side)

14 ret += traverse_tree(node.right_child, 'right')

15

16 return ret

17

18 return traverse_tree(self.root_node)

19



2.2. NODE-BASED DATA STRUCTURES 85

20

21 if __name__ == '__main__':

22 # We add some nodes to the tree

23 T = BinaryTreeInOrder()

24 T.add_node(4)

25 T.add_node(1)

26 T.add_node(5)

27 T.add_node(3)

28 T.add_node(20)

29

30 print(T)

parent: 4, value: 1 -> left

parent: 1, value: 3 -> right

parent: None, value: 4 -> root

parent: 4, value: 5 -> right

parent: 5, value: 20 -> right

Post-Order Traversal

The post-order traversal first finds the sub-trees descending from the children nodes, and finally the root.

1 # 33_binary_trees_post_order_traversal.py

2

3 class BinaryTreePostOrder(BinaryTree):

4 # We inherited the original class of our binary tree, and override the

5 # __repr__ method to traverse the tree using pre-order traversal.

6

7 def __repr__(self):

8 def traverse_tree(node, side="root"):

9 ret = ''

10

11 if node is not None:

12 ret += traverse_tree(node.left_child, 'left')

13 ret += traverse_tree(node.right_child, 'right')

14 ret += '{0} -> {1}\n'.format(node, side)

15



86 CHAPTER 2. DATA STRUCTURES

16 return ret

17

18 return traverse_tree(self.root_node)

19

20

21 if __name__ == '__main__':

22 # We add some nodes to the tree

23 T = BinaryTreePostOrder()

24 T.add_node(4)

25 T.add_node(1)

26 T.add_node(5)

27 T.add_node(3)

28 T.add_node(20)

29

30 print(T)

parent: 1, value: 3 -> right

parent: 4, value: 1 -> left

parent: 5, value: 20 -> right

parent: 4, value: 5 -> right

parent: None, value: 4 -> root

N-ary Trees

The N-ary trees correspond to a generalization of trees. Differently from the binary case, in N-ary trees, each node

may have zero or more children.

Linked Structured N-ary Tree

Similar to a binary tree, we can build N-ary trees using a linked structure where each node is a tree itself. Following

the tree definition, the complete N-ary tree is a collection of nodes that we append incrementally. Each node includes

the following attributes: node_id, parent_id, children, and value. Figure 2.14 shows an example of a tree

with three levels where each node has a value and an identifier.

The code below shows a recursive implementation of a linked structured tree:

1 # 34_linked_trees.py



2.2. NODE-BASED DATA STRUCTURES 87

Figure 2.14: An example of a general tree structure. Green circles denote the nodes that include its value. Each node
also has an identification number ID. Black arrows represent edges.

2

3 class Tree:

4 # We create the basic structure of the tree. Children nodes can be keep in

5 # a different data structure, such as: a lists or a dictionary. In this

6 # example we manage the children nodes in a dictionary.

7

8 def __init__(self, node_id, value=None, parent_id=None):

9 self.node_id = node_id

10 self.parent_id = parent_id

11 self.value = value

12 self.children = {}

13

14 def add_node(self, node_id, value=None, parent_id=None):

15 # Every time that we add a node, we need to verify the parent of the

16 # new node. If it is not the parent, we search recursively through the

17 # the tree until we find the right parent node.

18

19 if self.node_id == parent_id:

20 # If the node is the parent, we update the dictionary with the

21 # children.

22 self.children.update({node_id: Tree(node_id, value, parent_id)})



88 CHAPTER 2. DATA STRUCTURES

23 else:

24 # If the node is not the parent we search recursively

25 for child in self.children.values():

26 child.add_node(node_id, value, parent_id)

27

28 def get_node(self, node_id):

29 # We recursively get the node as long as it exists in the tree.

30 if self.node_id == node_id:

31 return self

32 else:

33 for child in self.children.values():

34 node = child.get_node(node_id)

35 if node:

36 # if the node exists in the tree, returns the node

37 return node

38

39 def __repr__(self):

40 # We override this method in order to traverse recursively the node in

41 # the tree.

42 def traverse_tree(root):

43 ret = ''

44 for child in root.children.values():

45 ret += "id-node: {} -> parent_id: {} -> value: {}\n".format(

46 child.node_id, child.parent_id, child.value)

47 ret += traverse_tree(child)

48 return ret

49

50 ret = 'root:\nroot-id: {} -> value: {}\n\nchildren:\n'.format(

51 self.node_id, self.value)

52 ret += traverse_tree(self)

53

54 return ret

55

56

57 if __name__ == '__main__':



2.2. NODE-BASED DATA STRUCTURES 89

58 T = Tree(0, 10)

59 T.add_node(1, 8, 0)

60 T.add_node(2, 12, 0)

61 T.add_node(3, 4, 1)

62 T.add_node(4, 9, 1)

63 T.add_node(5, 1, 3)

64 T.add_node(6, 18, 2)

root:

root-id: 0 -> value: 10

children:

id-node: 1 -> parent_id: 0 -> value: 8

id-node: 3 -> parent_id: 1 -> value: 4

id-node: 5 -> parent_id: 3 -> value: 1

id-node: 4 -> parent_id: 1 -> value: 9

id-node: 2 -> parent_id: 0 -> value: 12

id-node: 6 -> parent_id: 2 -> value: 18

We use the method get_node() to get a specific node. In this implementation, the method returns the object

representing the node:

1 node = T.get_node(6)

2 print('The ID of the node is {}'.format(node))

3

4 node = T.get_node(1)

5 print('The node has {} children'.format(len(node.children)))

The ID of the node is root:

root-id: 6 -> value: 18

children:

The node have 2 children



90 CHAPTER 2. DATA STRUCTURES

N-ary Tree Traversal

There are two basic methods to traverse the tree: pre-order traversal and post-order traversal. These approaches

generalize the traverse methods for binary trees. Note that in this case, the in-order traverse is difficult to define

because we cannot determine after which child we have to visit the root node.

Pre-Order Traversal

In this method, we first visit the root node and then its children recursively:

1 # 35_trees_pre_order_traversal.py

2

3 class TreePreOrder(Tree):

4 # We inherited the original class of our linked tree, and override the

5 # __repr__ method to traverse the tree using pre-order traversal.

6

7 def __repr__(self):

8 def traverse_tree(root):

9 ret = ''

10 # We first visit the root note

11 ret += "node_id: {}, parent_id: {} -> value: {}\n".format(

12 root.node_id, root.parent_id, root.value)

13

14 # And finally, we traverse the children recursively

15 for child in root.children.values():

16 ret += traverse_tree(child)

17

18 return ret

19

20 return traverse_tree(self)

21

22

23 if __name__ == '__main__':

24 # We add some nodes to the tree

25 T = TreePreOrder(0, 10)

26 T.add_node(1, 8, 0)

27 T.add_node(2, 12, 0)



2.2. NODE-BASED DATA STRUCTURES 91

28 T.add_node(3, 4, 1)

29 T.add_node(4, 4, 1)

30 T.add_node(5, 1, 3)

31 T.add_node(6, 18, 2)

32

33 print(T)

node_id: 0, parent_id: None -> value: 10

node_id: 1, parent_id: 0 -> value: 8

node_id: 3, parent_id: 1 -> value: 4

node_id: 5, parent_id: 3 -> value: 1

node_id: 4, parent_id: 1 -> value: 4

node_id: 2, parent_id: 0 -> value: 12

node_id: 6, parent_id: 2 -> value: 18

Post-Order Traversal

The post-order traversal first finds the sub-trees descendant from the children nodes, and finally the root:

1 class TreePostOrder(Tree):

2 # We inherited the class Tree from te previous example and we override the

3 # __repr__ method using the post-order traversal.

4

5 def __repr__(self):

6 def traverse_tree(root):

7 ret = ''

8

9 # we first recursively traverse the children

10 for child in root.children.values():

11 ret += traverse_tree(child)

12

13 # Finally, we visit the root note

14 string = "node_id: {}, parent_id: {} -> value: {}\n"

15 ret += string.format(root.node_id, root.parent_id, root.value)

16

17 return ret

18



92 CHAPTER 2. DATA STRUCTURES

19 return traverse_tree(self)

20

21

22 if __name__ == '__main__':

23 # We add instances to the tree

24 T = TreePostOrder(0, 10)

25 T.add_node(1, 8, 0)

26 T.add_node(2, 12, 0)

27 T.add_node(3, 4, 1)

28 T.add_node(4, 4, 1)

29 T.add_node(5, 1, 3)

30 T.add_node(6, 18, 2)

31

32 print(T)

node_id: 5, parent_id: 3 -> value: 1

node_id: 3, parent_id: 1 -> value: 4

node_id: 4, parent_id: 1 -> value: 4

node_id: 1, parent_id: 0 -> value: 8

node_id: 6, parent_id: 2 -> value: 18

node_id: 2, parent_id: 0 -> value: 12

node_id: 0, parent_id: None -> value: 10

Non-Recursive Traversal

There are two non-recursive methods to implement the tree traversal: Breadth-First Search (BFS) and Depth-First

Search (DFS). These non-recursive algorithms use auxiliary data structures to keep a record of the nodes we must

visit, to avoid infinite loops while traversing trees or other complex node-based structures.

Breadth-First Search

In the BFS strategy, the algorithm traverses the nodes level by level hierarchically, i.e, the root node first, then the set

of nodes on the second level, etc. This algorithm uses a queue to keep the nodes that it has to visit in the following

iterations.

1

2 class TreeBFS(Tree):



2.2. NODE-BASED DATA STRUCTURES 93

3 # We inherited the original class Tree from the previous example and

4 # override the __repr__ method to apply the BFS algorithm.

5

6 def __repr__(self):

7 def traverse_tree(root):

8 ret = ''

9 Q = deque()

10 Q.append(root)

11

12 # We use a list to keep the visited nodes

13 visited = []

14

15 while len(Q) > 0:

16 p = Q.popleft()

17

18 if p.node_id not in visited:

19 # We check if the node is in the visited nodes list. If is

20 # not in the list, we add it

21 visited.append(p.node_id)

22

23 ret += "node_id: {}, parent_id: {} -> value: {}\n".format(

24 p.node_id, p.parent_id, p.value)

25 for child in p.children.values():

26 Q.append(child)

27

28 return ret

29 return traverse_tree(self)

30

31

32 if __name__ == '__main__':

33 # We add items to the tree

34 T = TreeBFS(0, 10)

35 T.add_node(1, 8, 0)

36 T.add_node(2, 12, 0)

37 T.add_node(3, 4, 1)



94 CHAPTER 2. DATA STRUCTURES

38 T.add_node(4, 4, 1)

39 T.add_node(5, 1, 3)

40 T.add_node(6, 18, 2)

41

42 print(T)

node_id: 0, parent_id: None -> value: 10

node_id: 1, parent_id: 0 -> value: 8

node_id: 2, parent_id: 0 -> value: 12

node_id: 3, parent_id: 1 -> value: 4

node_id: 4, parent_id: 1 -> value: 4

node_id: 6, parent_id: 2 -> value: 18

node_id: 5, parent_id: 3 -> value: 1

Depth-First Search

In the DFS approach, the traversal algorithm starts from the top node and then goes down until it reaches a leaf. To

achieve this kind of traversal, we have to use a stack to add the children nodes that we will visit in future iterations:

1 class TreeDFS(Tree):

2 # We inherited the original class Tree from the previous example and

3 # override the __repr__ method to apply the BFS algorithm.

4

5 def __repr__(self):

6 def traverse_tree(root):

7 ret = ''

8 Q = []

9 Q.append(root)

10

11 # We use a list to keep the visited nodes

12 visited = []

13

14 while len(Q) > 0:

15 p = Q.pop()

16

17 if p.node_id not in visited:

18 # We check if the node is in the visited nodes list. If is



2.2. NODE-BASED DATA STRUCTURES 95

19 # not in the list, we add it

20 visited.append(p.node_id)

21

22 ret += "node_id: {}, parent_id: {} -> value: {}\n".format(

23 p.node_id, p.parent_id, p.value)

24 for child in p.children.values():

25 Q.append(child)

26

27 return ret

28 return traverse_tree(self)

29

30

31 if __name__ == '__main__':

32 # We add items to the tree

33 T = TreeDFS(0, 10)

34 T.add_node(1, 8, 0)

35 T.add_node(2, 12, 0)

36 T.add_node(3, 4, 1)

37 T.add_node(4, 4, 1)

38 T.add_node(5, 1, 3)

39 T.add_node(6, 18, 2)

40

41 print(T)

node_id: 0, parent_id: None -> value: 10

node_id: 2, parent_id: 0 -> value: 12

node_id: 6, parent_id: 2 -> value: 18

node_id: 1, parent_id: 0 -> value: 8

node_id: 4, parent_id: 1 -> value: 4

node_id: 3, parent_id: 1 -> value: 4

node_id: 5, parent_id: 3 -> value: 1

In this chapter, we reviewed the most common data structures in Python, if the reader wants to go deeper into data

structures and algorithms we recommend the books of Cormen [4] and Karumanchi [5].



96 CHAPTER 2. DATA STRUCTURES

2.3 Hands-On Activities

Activity 2.1

In a production line of bottles, you have to implement software that lets the user predict the output of his factory. A

colleague has modeled the process, and he asks you to finish the code by adding all the functionalities. Your task is to

complete only the methods that appear commented in the code, explained below.

1 from collections import deque

2 from package import Package

3 from bottle import Bottle

4

5

6 class Machine:

7

8 def process(self, incoming_production_line):

9 print("----------------------")

10 print("Machine {} started working.".format(

11 self.__class__.__name__))

12

13

14 class BottleModulator(Machine):

15

16 def __init__(self):

17 self.bottles_to_produce = 0

18

19 def process(self, incoming_production_line=None):

20 super().process(incoming_production_line)

21 # --------------

22 # Complete the method

23 # --------------

24 return None

25

26

27 class LowFAT32(Machine):

28

29 def __init__(self):



2.3. HANDS-ON ACTIVITIES 97

30 self.discarded_bottles = []

31

32 def discard_bottle(self, bottle):

33 self.discarded_bottles.append(bottle)

34

35 def print_discarded_bottles(self):

36 print("{} bottles were discarded".format(

37 len(self.discarded_bottles)))

38

39 def process(self, incoming_production_line):

40 # -----------------

41 # Complete the method

42 # -----------------

43 return None

44

45

46 class HashSoda9001(Machine):

47

48 def process(self, incoming_production_line):

49 super().process(incoming_production_line)

50 # ----------------

51 # Complete the method

52 # ----------------

53 return None

54

55

56 class PackageManager(Machine):

57

58 def process(self, incoming_production_line):

59 packages = deque()

60 for stack in incoming_production_line.values():

61 package = Package()

62 package.add_bottles(stack)

63 packages.append(package)

64 return packages



98 CHAPTER 2. DATA STRUCTURES

65

66

67 class Factory:

68

69 def __init__(self):

70 self.bottlemodulator = BottleModulator()

71 self.lowFAT32 = LowFAT32()

72 self.hashSoda9001 = HashSoda9001()

73 self.packageManager = PackageManager()

74

75 def producir(self, num_bottles):

76 self.bottlemodulator.bottles_to_produce = num_bottles

77 product = None

78 for machine in [self.bottlemodulator,

79 self.lowFAT32,

80 self.hashSoda9001,

81 self.packageManager]:

82 product = machine.process(product)

83 return product

84

85

86 if __name__ == "__main__":

87

88 num_bottles = 423

89

90 factory = Factory()

91 output = factory.producir(num_bottles)

92 print("----------------------")

93 print("{} bottles produced {} packages".format(

94 num_bottles, len(output)))

95 for package in output:

96 package.see_content()

97 print("----------------------")

The class bottle has a parameter that denote its maximum capacity in liters (lts). By default the maximum capacity is 1

lt. and it is filled with the delicious soda DCC-Cola. The class factory has a method that receives the number of bottles



2.3. HANDS-ON ACTIVITIES 99

that will be produced. Each machine has the method process that receives bottles as incoming_production_line.

1. Bottlemodulator: this machine creates the bottles. It has an attribute to set up the number of bottles to produce.

The incoming_production_line is null. By default, it produces bottles of 1-liter capacity, however, after a

particular number of bottles occurs the following variations:

• Each five produced bottles, the next bottle (ex: 6, 11, 16, ...) will have three times of the standard capacity

(1 lt.)

• Each six produced bottles, the next bottle (ex: 7, 13, 19, ...) will have half of the last bottle capacity (1 lt.)

plus four times of the antepenultimate bottle.

At the end of this process, each bottle passes to a production line in the same order that they were created. The

method that models this machine returns the production line.

2. Low-FAT32: this machine processes the production line provided by the Bottlemodulator and fills a dispatch

line. It chooses the first bottle from the incoming production line. If there is no bottle in this new line, the

machine adds the first one. If the machine already has added bottles:

• It puts the bottle at the end of the dispatch line if the bottle has the same or greater capacity than the last

bottle in the line.

• It puts the bottle at the beginning of the dispatch line if the bottle has the same or less capacity that the first

bottle in the line.

• It discards the bottle in other cases.

At the end of this process, it shows the number of discarded bottles. Finally, the model of the machine returns

the dispatch line.

3. HashSoda9001: this machine classifies and stacks the incoming bottles according to their size (for n different

capacities we will have b different stacks).

4. PackageManager: the function of this machine is to pack the stacks of bottles provided by the previous

machine. It returns a list of packages. Your colleague has already programmed this machine.

You have to complete the BottleModulator, Low-FAT32, and HashSoda9001 machines, such that they return the

expected output.



100 CHAPTER 2. DATA STRUCTURES

Activity 2.2

Most of the data structures saw in this chapter are linear, however, in some situations, we require to work using more

dimensions, such as a graph to navigate in a labyrinth or a tree to make decisions or perform depth search. In this

activity, we use a data structure that models a subway map, where each station can have until four adjacent subway

stations: Right, Left, Up, and Down. Below we show an example of a map. Note that station one is connected to

station two, but not the other way around. We can also note that it is possible to reach station eleven from station zero.

However, it is not feasible to go from station zero to station nineteen.

Figure 2.15

Get the files main.py and station.py provided in https://github.com/advancedpythonprogramming

Modify only the file main.py and complete the path method, that works as follows:

• This method receives two subway stations

• It returns False if it is not possible to arrive from the origin to the end. You must respect the rest of the paths.

• It returns True if exist a path between the origin and the destination. It also prints the path.

You can create methods, classes or anything you require in the main.py file. You cannot change the signature

of the path method. You can work with the map provided in 2.15. The method used to generate the map is

SubwayMetro.example_map()


