
Chapter 1

Object Oriented Programming

In the real world, objects are tangible; we can touch and feel them, they represent something meaningful for us. In the

software engineering field, objects are a virtual representation of entities that have a meaning within a particular context.

In this sense, objects keep information/data related to what they represent and can perform actions/behaviors using

their data. Object Oriented Programming (OOP) means that programs model functionalities through the interaction

among objects using their data and behavior. The way OOP represents objects is an abstraction. It consists in to create

a simplified model of the reality taking the more related elements according to the problem context and transforming

them into attributes and behaviors. Assigning attributes and methods to objects involves two main concepts close

related with the abstraction: encapsulation and interface.

Encapsulation refers to the idea of some attributes do not need to be visualized by other objects, so we can produce

a cleaner code if we keep those attributes inside their respective object. For example, imagine we have the object

Amplifer that includes attributes tubes and power transformer. These attributes only make sense inside

the amplifier because other objects such as the Guitar do not need to interact with them nor visualize them. Hence,

we should keep it inside the object Amplifier.

Interface let every object has a “facade” to protect its implementation (internal attributes and methods) and interact

with the rest of objects. For example, an amplifier may be a very complex object with a bunch of electronic pieces

inside. Think of another object such as the Guitar player and the Guitar that only interact with the amplifier

through the input plug and knobs. Furthermore, two or more objects may have the same interface allowing us to

replace them independently of their implementation and without change how we use them. Imagine a guitar player

wants to try a tube amplifier and a solid state amp. In both cases, amplifiers have the interface (knobs an input plug)

and offer the same user experience independently of their construction. In that sense, each object can provide the

10 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

suitable interface according to the context.

1.1 Classes

From the OOP perspective, classes describe objects, and each object is an instance of a class. The class statement

allow us to define a class. For convention, we name classes using CamelCase and methods using snake_case.

Here is an example of a class in Python:

1 # create_apartment.py

2

3

4 class Apartment:

5 '''

6 Class that represents an apartment for sale

7 value is in USD

8 '''

9

10 def __init__(self, _id, mts2, value):

11 self._id = _id

12 self.mts2 = mts2

13 self.value = value

14 self.sold = False

15

16 def sell(self):

17 if not self.sold:

18 self.sold = True

19 else:

20 print("Apartment {} was sold"

21 .format(self._id))

To create an object, we must create an instance of a class, for example, to create an apartment for sale we have to call

the class Apartment with the necessary parameters to initialize it:

1 # instance_apartment.py

2

3 from create_apartment import Apartment

1.1. CLASSES 11

4

5 d1 = Apartment(_id=1, mts2=100, value=5000)

6

7 print("sold?", d1.sold)

8 d1.sell()

9 print("sold?", d1.sold)

10 d1.sell()

sold? False

sold? True

Apartment 1 was sold

We can see that the __init__ method initializes the instance by setting the attributes (or data) to the initial values,

passed as arguments. The first argument in the __init__ method is self, which corresponds to the instance itself.

Why do we need to receive the same instance as an argument? Because the __init__ method is in charge of the

initialization of the instance, hence it naturally needs access to it. For the same reason, every method defined in the

class that specifies an action performed by the instance must receive self as the first argument. We may think of

these methods as methods that belong to each instance. We can also define methods (inside a class) that are intended

to perform actions within the class attributes, not to the instance attributes. Those methods belong to the class and do

not need to receive self as an argument. We show some examples later.

Python provides us with the help(<class>) function to watch a description of a class:

1 help(Apartment)

#output

Help on class Apartment in module create_apartment:

class Apartment(builtins.object)

| Class that represents an apartment for sale

| price is in USD

|

| Methods defined here:

|

| __init__(self, _id, sqm, price)

12 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

|

| sell(self)

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

1.2 Properties

Encapsulation suggests some attributes and methods are private according to the object implementation, i.e., they

only exist within an object. Unlike other programming languages such as C++ or Java, in Python, the private concept

does not exist. Therefore all attributes/methods are public, and any object can access them even if an interface exist.

As a convention, we can suggest that an attribute or method to be private adding an underscore at the beginning

of its name. For example, _<attribute/method name>. Even with this convention, we may access directly

to the attributes or methods. We can strongly suggest that an element within an object is private using a double

underscore __<attribute/method name>. The name of this approach is name mangling. It concerns to the

fact of encoding addition semantic information into variables. Remember both approaches are conventions and good

programming practices.

Properties are the pythonic mechanism to implement encapsulation and the interface to interact with private attributes

of an object. It means every time we need that an attribute has a behavior we define it as property. In other way, we are

forced to use a set of methods that allow us to change and retrieve the attribute values, e.g, the commonly used pattern

get_value() and set_value(). This approach could generate us several maintenance problems.

The property() function allow us to create a property, receiving as arguments the functions use to get, set and delete

the attribute as property(<setter_function>, <getter_function>, <deleter_function>).

The next example shows the way to create a property:

1 # property.py

2

3 class Email:

1.2. PROPERTIES 13

4

5 def __init__(self, address):

6 self._email = address # A private attribute

7

8 def _set_email(self, value):

9 if '@' not in value:

10 print("This is not an email address.")

11 else:

12 self._email = value

13

14 def _get_email(self):

15 return self._email

16

17 def _del_email(self):

18 print("Erase this email attribute!!")

19 del self._email

20

21 # The interface provides the public attribute email

22 email = property(_get_email, _set_email, _del_email,

23 'This property contains the email.')

Check out how the property works once we create an instance of the Email class:

1 m1 = Email("kp1@othermail.com")

2 print(m1.email)

3 m1.email = "kp2@othermail.com"

4 print(m1.email)

5 m1.email = "kp2.com"

6 del m1.email

kp1@othermail.com

kp2@othermail.com

This is not an email address.

Erase this email attribute!!

Note that properties makes the assignment of internal attributes easier to write and read. Python also let us to define

properties using decorators. Decorators is an approach to change the behavior of a method. The way to create a

14 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

property through decorators is adding @property statement before the method we want to define as attribute. We

explain decorators in Chapter 3.

1 # property_without_decorator.py

2

3 class Color:

4

5 def __init__(self, rgb_code, name):

6 self.rgb_code = rgb_code

7 self._name = name

8

9 def set_name(self, name):

10 self._name = name

11

12 def get_name(self):

13 return self._name

14

15 name = property(get_name, set_name)

1 # property_with_decorator.py

2

3 class Color:

4

5 def __init__(self, rgb_code, name):

6 self._rgb_code = rgb_code

7 self._name = name

8

9 # Create the property using the name of the attribute. Then we

10 # define how to get/set/delet it.

11 @property

12 def name(self):

13 print("Function to get the name color")

14 return self._name

15

16 @name.setter

17 def name(self, new_name):

1.3. AGGREGATION AND COMPOSITION 15

18 print("Function to set the name as {}".format(new_name))

19 self._name = new_name

20

21 @name.deleter

22 def name(self):

23 print("Erase the name!!")

24 del self._name

1.3 Aggregation and Composition

In OOP there are different ways from which objects interact. Some objects are a composition of other objects who

only exists for that purpose. For instance, the object printed circuit board only exists inside a amplifier

and its existence only last while the amplifier exists. That kind of relationship is called composition. Another kind

of relationship between objects is aggregation, where a set of objects compose another object, but they may continue

existing even if the composed object no longer exist. For example, students and a teacher compose a classroom, but

both are not meant to be just part of that classroom, they may continue existing and interacting with other objects

even if that particular classroom disappears. In general, aggregation and composition concepts are different from the

modeling perspective. The use of them depends on the context and the problem abstraction. In Python, we can see

aggregation when the composed object receive instances of the components as arguments, while in composition, the

composed object instantiates the components at its initialization stage.

1.4 Inheritance

The inheritance concept allows us to model relationships like “object B is an object A but specialized in certain

functions”. We can see a subclass as a specialization of its superclass. For example, lets say we have a class called

Car which has attributes: brand, model and year; and methods: stop, charge_gas and fill_tires.

Assume that someone asks us to model a taxi, which is a car but has some additional specifications. Since we already

have defined the Car class, it makes sense somehow to re-use its attributes and methods to create a new Taxi class

(subclass). Of course, we have to add some specific attributes and methods to Taxi, like taximeter, fares or

create_receipt. However, if we do not take advantage of the Car superclass by inheriting from it, we will have

to repeat a lot of code. It makes our software much harder to maintain.

Besides inheriting attributes and methods from a superclass, inheritance allows us to “re-write” superclass methods.

Suppose that the subclass Motorcycle inherits from the class Vehicle. The method called fill_tires from

16 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Vehicle has to be changed inside Motorcycle, because motorcycles (in general) have two wheels instead of four.

In Python, to modify a method in the subclass we just need to write it again, this is called overriding, so that Python

understands that every time the last version of the method is the one that holds for the rest of the code.

A very useful application of inheritance is to create subclasses that inherit from some of the Python built-in classes, to

extend them into a more specialized class. For example, if we want to create a custom class similar to the built-in class

list, we just must create a subclass that inherits from list and write the new methods we want to add:

1 # grocery_list.py

2

3

4 class GroceryList(list):

5

6 def discard(self, price):

7 for product in self:

8 if product.price > price:

9 # remove method is implemented in the class "list"

10 self.remove(product)

11 return self

12

13 def __str__(self):

14 out = "Grocery List:\n\n"

15 for p in self:

16 out += "name: " + p.name + " - price: "

17 + str(p.price) + "\n"

18

19 return out

20

21

22 class Product:

23

24 def __init__(self, name, price):

25 self.name = name

26 self.price = price

27

28

1.5. MULTIPLE INHERITANCE 17

29 grocery_list = GroceryList()

30

31 # extend method also belongs to 'list' class

32 grocery_list.extend([Product("bread", 5),

33 Product("milk", 10), Product("rice", 12)])

34

35 print(grocery_list)

36 grocery_list.discard(11)

37 print(grocery_list)

Grocery List:

name: bread - price: 5

name: milk - price: 10

name: rice - price: 12

Grocery List:

name: bread - price: 5

name: milk - price: 10

Note that the __str__ method makes the class instance able to be printed out, in other words, if we call

print(grocery_list) it will print out the string returned by the __str__ method.

1.5 Multiple Inheritance

We can inherit from more than one class. For example, a professor might be a teacher and a researcher, so she/he

should inherit attributes and methods from both classes:

1 # multiple_inheritance.py

2

3

4 class Researcher:

5

6 def __init__(self, field):

7 self.field = field

18 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

8

9 def __str__(self):

10 return "Research field: " + self.field + "\n"

11

12

13 class Teacher:

14

15 def __init__(self, courses_list):

16 self.courses_list = courses_list

17

18 def __str__(self):

19 out = "Courses: "

20 for c in self.courses_list:

21 out += c + ", "

22 # the [:-2] selects all the elements

23 # but the last two

24 return out[:-2] + "\n"

25

26

27 class Professor(Teacher, Researcher):

28

29 def __init__(self, name, field, courses_list):

30 # This is not completetly right

31 # Soon we will see why

32 Researcher.__init__(self, field)

33 Teacher.__init__(self, courses_list)

34 self.name = name

35

36 def __str__(self):

37 out = Researcher.__str__(self)

38 out += Teacher.__str__(self)

39 out += "Name: " + self.name + "\n"

40 return out

41

42

1.5. MULTIPLE INHERITANCE 19

43 p = Professor("Steve Iams",

44 "Meachine Learning",

45 [

46 "Python Programming",

47 "Probabilistic Graphical Models",

48 "Bayesian Inference"

49])

50

51 print(p)

#output

Research field: Meachine Learning

Courses: Python Programming, Probabilistic Graphical Models,

Bayesian Inference

Name: Steve Iams

Multiple Inheritance Problems

In Python, every class inherits from the Object class, that means, among other things, that every time we in-

stantiate a class, we are indirectly creating an instance of Object. Assume we have a class that inherits from

several superclasses. If we call to all the __init__ superclass methods, as we did in the previous example

(calling Researcher.__init__ and Teacher.__init__), we are calling the Object initializer twice:

Researcher.__init__ calls the initialization of Object and Teacher.__init__ calls the initialization of

Object as well. Initializing objects twice is not recommended. It is a waste of resources, especially in cases where

the initialization is expensive. It could be even worst. Imagine that the second initialization changes the setup done by

the first one, and probably the objects will not notice it. This situation is known as The Diamond Problem.

The following example (taken from [6]) shows what happens in the context of multiple-inheritance if each subclass

calls directly to initialize all its superclasses. Figure 1.1 indicates the hierarchy of the classes involved.

The example below (taken from [6]) shows what happens when we call the call() method in both superclasses from

SubClassA.

1 # diamond_problem.py

2

20 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Figure 1.1: The diamond problem

3 class ClassB:

4 num_calls_B = 0

5

6 def make_a_call(self):

7 print("Calling method in ClassB")

8 self.num_calls_B += 1

9

10

11 class LeftSubClass(ClassB):

12 num_left_calls = 0

13

14 def make_a_call(self):

15 ClassB.make_a_call(self)

16 print("Calling method in LeftSubClass")

17 self.num_left_calls += 1

18

19

20 class RightSubClass(ClassB):

21 num_right_calls = 0

1.5. MULTIPLE INHERITANCE 21

22

23 def make_a_call(self):

24 ClassB.make_a_call(self)

25 print("Calling method in RightSubClass")

26 self.num_right_calls += 1

27

28

29 class SubClassA(LeftSubClass, RightSubClass):

30 num_calls_subA = 0

31

32 def make_a_call(self):

33 LeftSubClass.make_a_call(self)

34 RightSubClass.make_a_call(self)

35 print("Calling method in SubClassA")

36 self.num_calls_subA += 1

37

38

39 if __name__ == '__main__':

40 s = SubClassA()

41 s.make_a_call()

42 print("SubClassA: {}".format(s.num_calls_subA))

43 print("LeftSubClass: {}".format(s.num_left_calls))

44 print("RightSubClass: {}".format(s.num_right_calls))

45 print("ClassB: {}".format(s.num_calls_B))

Calling method in ClassB

Calling method in LeftSubClass

Calling method in ClassB

Calling method in RightSubClass

Calling method in SubClassA

SubClassA: 1

LeftSubClass: 1

RightSubClass: 1

ClassB: 2

From the output, we can see that the upper class in the hierarchy (ClassB) is called twice, despite that we just directly

22 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

call it once in the code.

Every time that one class inherits from two classes, a diamond structure is created. We refer the readers to

https://www.python.org/doc/newstyle/ for more details about new style classes. Following the same example shown

above, if instead of calling the make_a_call() method we call the __init__ method, we would be initializing

Object twice.

Solution to the diamond problem

One possible solution to the diamond problem is that each class must call the initialization of the superclass that

precedes it in the multiple inheritance resolution order. In Python, the order goes from left to right on the list of

superclasses from where the subclass inherits.

In this case, we just should call to super(), because Python will make sure to call the parent class in the multiple in-

heritance resolution order. In the previous example, after the subclass goes LeftSubclass, then RightSubClass,

and finally ClassB. From the following output, we can see that each class was initialized once:

1 # diamond_problem_solution.py

2

3 class ClassB:

4 num_calls_B = 0

5

6 def make_a_call(self):

7 print("Calling method in ClassB")

8 self.num_calls_B += 1

9

10

11 class LeftSubClass(ClassB):

12 num_left_calls = 0

13

14 def make_a_call(self):

15 super().make_a_call()

16 print("Calling method in LeftSubClass")

17 self.num_left_calls += 1

18

19

1.5. MULTIPLE INHERITANCE 23

20 class RightSubClass(ClassB):

21 num_right_calls = 0

22

23 def make_a_call(self):

24 super().make_a_call()

25 print("Calling method in RightSubClass")

26 self.num_right_calls += 1

27

28

29 class SubClassA(LeftSubClass, RightSubClass):

30 num_calls_subA = 0

31

32 def make_a_call(self):

33 super().make_a_call()

34 print("Calling method in SubClassA")

35 self.num_calls_subA += 1

36

37 if __name__ == '__main__':

38

39 s = SubClassA()

40 s.make_a_call()

41 print("SubClassA: {}".format(s.num_calls_subA))

42 print("LeftSubClass: {}".format(s.num_left_calls))

43 print("RightSubClass: {}".format(s.num_right_calls))

44 print("ClassB: {}".format(s.num_calls_B))

Calling method in ClassB

Calling method in RightSubClass

Calling method in LeftSubClass

Calling method in SubClassA

SubClassA: 1

LeftSubClass: 1

RightSubClass: 1

ClassB: 1

24 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Method Resolution Order

The mro method shows us the hierarchy order. It is very useful in more complex multiple-inheritance cases. Python

uses the C3 [3] algorithm to calculate a linear order among the classes involved in multiple inheritance schemes.

1 # mro.py

2

3 from diamond_problem_solution import SubClassA

4

5 for c in SubClassA.__mro__:

6 print(c)

<class ’diamond_problem_solution.SubClassA’>

<class ’diamond_problem_solution.LeftSubClass’>

<class ’diamond_problem_solution.RightSubClass’>

<class ’diamond_problem_solution.ClassB’>

<class ’object’>

The next example describes a case of an unrecommended initialization. The C3 algorithm generates an error because

it cannot create a logical order:

1 # invalid_structure.py

2

3 class X():

4 def call_me(self):

5 print("I'm X")

6

7

8 class Y():

9 def call_me(self):

10 print("I'm Y")

11

12

13 class A(X, Y):

14 def call_me(self):

15 print("I'm A")

16

1.5. MULTIPLE INHERITANCE 25

17

18 class B(Y, X):

19 def call_me(self):

20 print("I'm B")

21

22

23 class F(A, B):

24 def call_me(self):

25 print("I'm F")

26

27 # TypeError: Cannot create a consistent method resolution

28 # order (MRO) for bases X, Y

Traceback (most recent call last):

File "/codes/invalid_structure.py",

line 24, in <module>

class F(A, B):

TypeError: Cannot create a consistent method resolution

order (MRO) for bases X, Y

A Multiple Inheritance Example

Here we present another case of multiple-inheritance, showing the wrong and the right way to call the initialization of

superclasses:

Wrong initialization of the superclass’ __init__ method

Calling directly to superclasses’ __init__ method inside the class Customer, as we show in the next example, is

highly not recommended. We could initiate a superclass multiple times, as we mentioned previously. In this example,

a call to object’s __init__ is done twice:

1 # inheritance_wrong.py

2

3

4 class AddressHolder:

5

6 def __init__(self, street, number, city, state):

26 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

7 self.street = street

8 self.number = number

9 self.city = city

10 self.state = state

11

12

13 class Contact:

14

15 contact_list = []

16

17 def __init__(self, name, email):

18 self.name = name

19 self.email = email

20 Contact.contact_list.append(self)

21

22

23 class Customer(Contact, AddressHolder):

24

25 def __init__(self, name, email, phone,

26 street, number, state, city):

27 Contact.__init__(self, name, email)

28 AddressHolder.__init__(self, street, number,

29 state, city)

30 self.phone = phone

31

32

33 if __name__ == "__main__":

34

35 c = Customer('John Davis', 'jp@g_mail.com', '23542331',

36 'Beacon Street', '231', 'Cambridge', 'Massachussets')

37

38 print("name: {}\nemail: {}\naddress: {}, {}"

39 .format(c.name, c.email, c.street, c.state))

name: John Davis

email: jp@g_mail.com

1.5. MULTIPLE INHERITANCE 27

address: Beacon Street, Massachussets

The right way: *args y **kwargs

Before showing the fixed version of the above example, we show how to use a list of arguments (*args) and keyword

arguments (**kwargs). In this case *args refers to a Non-keyword variable length argument list, where the

operator * unpacks the content inside the list args and pass them to a function as positional arguments.

1 # args_example.py

2

3 def method2(f_arg, *argv):

4 print("first arg normal: {}".format(f_arg))

5 for arg in argv:

6 print("the next arg is: {}".format(arg))

7

8 if __name__ == "__main__":

9 method2("Lorem", "ipsum", "ad", "his", "scripta")

first arg normal: Lorem

the next arg is: ipsum

the next arg is: ad

the next arg is: his

the next arg is: scripta

Similarly, **kwargs refers to a keyword variable-length argument list, where ** maps all the elements within the

dictionary kwargs and pass them to a function as non-positional arguments. This method is used to send a variable

amount of arguments to a function:

1 # kwargs_example.py

2

3 def method(arg1, arg2, arg3):

4 print("arg1: {}".format(arg1))

5 print("arg2: {}".format(arg2))

6 print("arg3: {}".format(arg3))

7

8

28 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

9 if __name__ == "__main__":

10 kwargs = {"arg3": 3, "arg2": "two"}

11 method(1, **kwargs)

arg1: 1

arg2: two

arg3: 3

Now that we know how to use *args and **kwargs, we can figure out how to properly write an example of

multiple inheritance as shown before:

1 # inheritance_right.py

2

3

4 class AddressHolder:

5

6 def __init__(self, street, number, city, state, **kwargs):

7 super().__init__(**kwargs)

8 self.street = street

9 self.number = number

10 self.city = city

11 self.state = state

12

13

14 class Contact:

15 contact_list = []

16

17 def __init__(self, name, email, **kwargs):

18 super().__init__(**kwargs)

19 self.name = name

20 self.email = email

21 Contact.contact_list.append(self)

22

23

24 class Customer(Contact, AddressHolder):

25

1.5. MULTIPLE INHERITANCE 29

26 def __init__(self, phone_number, **kwargs):

27 super().__init__(**kwargs)

28 self.phone_number = phone_number

29

30

31 if __name__ == "__main__":

32

33 c = Customer(name='John Davis', email='jp@g_mail.com',

34 phone_number='23542331', street='Beacon Street',

35 number='231', city='Cambridge', state='Massachussets')

36

37 print("name: {}\nemail: {}\naddress: {}, {}".format(c.name, c.email,

38 c.street, c.state))

name: John Davis

email: jp@g_mail.com

address: Beacon Street, Massachussets

As we can see in the above example, each class manage its own arguments passing the rest of the non-used arguments

to the higher classes in the hierarchy. For example, Customer passes all the non-used argument (**args) to

Contact and to AddressHolder through the super() function.

Polymorfism

Imagine that we have the ChessPiece class. This class has six subclasses: King, Queen, Rook, Bishop,

Knight, and Pawn. Each subclass contains the move method, but that method behaves differently on each subclass.

The ability to call a method with the same name but with different behavior within subclasses is called Polymorphism.

There are mainly two flavors of polymorphism:

• Overriding: occurs when a subclass implements a method that replaces the same method previously implemented

in the superclass.

• Overloading: happens when a method is implemented more than once, having a different number of arguments

on each case. Python does not support overloading because it is not really necessary. Each method can have a

variable number of arguments by using a keyworded o non-keyworded list of arguments. Recall that in Python

every time we implement a method more than once, the last version is the only one that Python will use. Other

30 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

programming languages support overloading, automatically detecting what method implementation to use

depending on the number of present arguments when the method is called.

The code bellow shows an example of Overriding. The Variable class represents data of any kind. The Income

class contains a method to calculate the representative value for it. In Income, the representative value is the average,

in City, the representative value is the most frequent city, and in JobTitle, the representative value is the job with

highest range, according to the _range dictionary:

1 # polymorfism_1.py

2

3 class Variable:

4 def __init__(self, data):

5 self.data = data

6

7 def representative(self):

8 pass

9

10

11 class Income(Variable):

12 def representative(self):

13 return sum(self.data) / len(self.data)

14

15

16 class City(Variable):

17 # class variable

18 _city_pop_size = {'Shanghai': 24000, 'Sao Paulo': 21300, 'Paris': 10800,

19 'London': 8600, 'Istambul': 15000,

20 'Tokyo': 13500, 'Moscow': 12200}

21

22 def representative(self):

23 dict = {City._city_pop_size[c]: c for c in self.data

24 if c in City._city_pop_size.keys()}

25 return dict[max(dict.keys())]

26

27

28 class JobTitle(Variable):

1.5. MULTIPLE INHERITANCE 31

29 # class variable

30 _range = {'CEO': 1, 'CTO': 2, 'Analyst': 3, 'Intern': 4}

31

32 def representative(self):

33 dict = {JobTitle._range[c]: c for c in self.data if

34 c in JobTitle._range.keys()}

35 return dict[min(dict.keys())]

36

37

38 if __name__ == "__main__":

39 income_list = Income([50, 80, 90, 150, 45, 65, 78, 89, 59, 77, 90])

40 city_list = City(['Shanghai', 'Sao Paulo', 'Paris', 'London',

41 'Istambul', 'Tokyo', 'Moscow'])

42 job_title_list = JobTitle(['CTO', 'Analyst', 'CEO', 'Intern'])

43 print(income_list.representative())

44 print(city_list.representative())

45 print(job_title_list.representative())

79.36363636363636

Shanghai

CEO

Operator Overriding

Python has several built-in operators that work for many of the built-in classes. For example, the operator “+” can

sum up two numbers, concatenate two strings, mix two lists, etc., depending on the object we are working with. The

following code shows an example:

1 # operator_overriding_1.py

2

3 a = [1, 2, 3, 4]

4 b = [5, 6, 7, 8]

5 print(a + b)

6

7 c = "Hello"

8 d = " World"

9 print(c + d)

32 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

[1, 2, 3, 4, 5, 6, 7, 8]

Hello World

Thanks to polymorphism, we can also personalize the method __add__ to make it work on any particular class we

want. For example, we may need to create a specific way of adding two instances of the ShoppingCart class in the

following code:

1 # operator_overriding_2.py

2

3 class ShoppingCart:

4

5 def __init__(self, product_list):

6 self.product_list = product_list # Python dictionary

7

8 def __call__(self, product_list = None):

9 if product_list is None:

10 product_list = self.product_list

11 self.product_list = product_list

12

13 def __add__(self, other_cart):

14 added_list = self.product_list

15 for p in other_cart.product_list.keys():

16 if p in self.product_list.keys():

17 value = other_cart.product_list[p] + self.product_list[p]

18 added_list.update({p: value})

19 else:

20 added_list.update({p: other_cart.product_list[p]})

21

22 return ShoppingCart(added_list)

23

24 def __repr__(self):

25 return "\n".join("Product: {} | Quantity: {}".format(

26 p, self.product_list[p]) for p in self.product_list.keys()

27)

28

29

1.5. MULTIPLE INHERITANCE 33

30 if __name__ == "__main__":

31 s_cart_1 = ShoppingCart({'muffin': 3, 'milk': 2, 'water': 6})

32 s_cart_2 = ShoppingCart({'milk': 5, 'soda': 2, 'beer': 12})

33 s_cart_3 = s_cart_1 + s_cart_2

34 print(s_cart_3.product_list)

35 print(s_cart_3)

{’soda’: 2, ’water’: 6, ’milk’: 7, ’beer’: 12, ’muffin’: 3}

Product: soda | Quantity: 2

Product: water | Quantity: 6

Product: milk | Quantity: 7

Product: beer | Quantity: 12

Product: muffin | Quantity: 3

The __repr__ method allows us to generate a string that will be used everytime we ask to print any instance of

the class. We could also implement the __str__ method instead, it works almost exactly as __repr__, the main

difference is that __str__ should be used when we need a user friendly print of the object instance, related to the

particular context where it is used. The __repr__ method should generate a more detailed printing, containing all the

necessary information to understand the instance. In cases where __str__ and __repr__ are both implemented,

Python will use __str__ when print(instance) is called. Hence, __repr__ will be used only if __str__

is not implemented.

There are other operators that we can override, for example “less than” (__lt__), “greather than” (__gt__) and

“equal” (__eq__). We refer the reader to https://docs.python.org/3.4/library/operator.html

for a detailed list of built-in operators. Here is an example that shows how to override the __lt__ method for

implementing the comparison between two elements of the Point class:

1 # operator_overriding_3.py

2

3 class Point:

4

5 def __init__(self, x, y):

6 self.x = x

7 self.y = y

8

9 def __lt__(self, other_point):

34 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

10 self_mag = (self.x ** 2) + (self.y ** 2)

11 other_point_mag = (other_point.x ** 2) + (other_point.y ** 2)

12 return self_mag < other_point_mag

13

14 if __name__ == "__main__":

15 p1 = Point(2, 4)

16 p2 = Point(8, 3)

17 print(p1 < p2)

True

Duck Typing

The most common way to define it is "If it walks like a duck and quacks like a duck, then it is a duck." In other words,

it does not matter what kind of object performs the action, if it can do it, let it do it. Duck typing is a feature that

some programming languages have that makes polymorphism less attractive because it allows polymorphic behavior

without inheritance. In the next example, we can see that the activate function makes a duck scream and walk.

Despite that the method is implemented for Duck objects, it can be used with any object that has the scream and

walk methods implemented:

1 # duck_typing.py

2

3

4 class Duck:

5

6 def scream(self):

7 print("Cuack!")

8

9 def walk(self):

10 print("Walking like a duck...")

11

12

13 class Person:

14

15 def scream(self):

16 print("Ahhh!")

1.6. ABSTRACT BASE CLASS 35

17

18 def walk(self):

19 print("Walking like a human...")

20

21

22 def activate(duck):

23 duck.scream()

24 duck.walk()

25

26 if __name__ == "__main__":

27 Donald = Duck()

28 John = Person()

29 activate(Donald)

30 # this is not supported in other languajes, because John

31 # is not a Duck object

32 activate(John)

Cuack!

Walking like a duck...

Ahhh!

Walking like a human...

Typed programming languages that verify the type of objects during compilation time, such as C/C++, do not support

duck typing because in the list of arguments the object’s type has to be specified.

1.6 Abstract Base Class

Abstract classes in a programming language allow us to represent abstract objects better. What is an abstract object?

Abstract objects are created only to be inherited, so it does not make any sense to instantiate them. For example,

imagine that we have cars, buses, ships, and planes. Each one has similar properties (passengers capacity, color,

among others) and actions (load, move, stop) but they implement their methods differently: it is not the same to stop a

ship than a car. For this reason, we can create the class called Vehicle, to be a superclass of Car, Bus, Ship and

Plane.

Our problem now is how do we define Vehicle’s actions. We cannot define any of those behaviors inside Vehicle.

We can only do it inside any of its subclasses. That explains why it does not make any sense to instantiate the abstract

36 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

class Vehicle. Hence, it is recommended to make sure that abstract classes are not going to be instantiated in the

code, by raising an exception in case any programmer attempts to instantiate it.

We can also have abstract methods, in other words, methods that have to be defined in the subclasses because their

implementation makes no sense to occur in the abstract class. Abstract classes can also have traditional (non abstract)

methods when they do not need to be modified withing the subclasses. Let’s try to define abstract classes and abstract

methods in Python. The following code shows an example:

1 # 01_abstract_1.py

2

3 class Base:

4 def func_1(self):

5 raise NotImplementedError()

6

7 def func_2(self):

8 raise NotImplementedError()

9

10 class SubClass(Base):

11 def func_1(self):

12 print("func_1() called...")

13 return

14

15 # We intentionally did not implement func_2

16

17 b1 = Base()

18 b2 = SubClass()

19 b2.func_1()

20 b2.func_2()

func_1() called...

NotImplementedError Traceback (most recent call last)

<ipython-input-17-0803174cce17> in <module>()

16 b2 = SubClass()

17 b2.func_1()

---> 18 b2.func_2()

1.6. ABSTRACT BASE CLASS 37

<ipython-input-17-0803174cce17> in func_2(self)

4

5 def func_2(self):

----> 6 raise NotImplementedError()

7

8 class SubClass(Base):

NotImplementedError:

The problem with this approach is that the program lets us instantiate Base without complaining, that is not what we

want. It also allows us not to implement all the needed methods in the subclass. An Abstract class allows the class

designer to assert that the user will implement all the required methods in the respective subclasses.

Python, unlike other programming languages, does not have a built-in way to declare abstract classes. Fortunately,

we can import the ABC module (stands for Abstract Base Class), that satisfies our requirements. The following code

shows an example:

1 # 03_ABC_1.py

2

3 from abc import ABCMeta, abstractmethod

4

5

6 class Base(metaclass=ABCMeta):

7 @abstractmethod

8 def func_1(self):

9 pass

10

11 @abstractmethod

12 def func_2(self):

13 pass

14

15

16 class SubClass(Base):

17 def func_1(self):

18 pass

19

38 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

20 # We intentionally did not implement func_2

21

22 print('Is it subclass?: {}'.format(issubclass(SubClass, Base)))

23 print('Is it instance?: {}'.format(isinstance(SubClass(), Base)))

Is it subclass?: True

TypeError Traceback (most recent call last)

<ipython-input-19-b1003dd6fd92> in <module>()

17

18 print(’Is it subclass?: {}’.format(issubclass(SubClass, Base)))

---> 19 print(’Is it instance?: {}’.format(isinstance(SubClass(), Base)))

TypeError: Can’t instantiate abstract class SubClass with abstract methods ’ \

’func_2

1 # 04_ABC_2.py

2

3 print('Trying to generate an instance of the Base class\n')

4 a = Base()

Trying to generate an instance of the Base class

TypeError Traceback (most recent call last)

<ipython-input-20-e8aa694c9937> in <module>()

1 print(’Trying to generate an instance of the Base class\n’)

----> 2 a = Base()

TypeError: Can’t instantiate abstract class Base with abstract methods

func_1, func_2

Note that to declare a method as abstract we have to add the @abstractmethod decorator over its declaration. The

following code shows the implementation of the abstract methods:

1 # 05_ABC_3.py

2

3 from abc import ABCMeta, abstractmethod

1.7. CLASS DIAGRAMS 39

4

5

6 class Base(metaclass=ABCMeta):

7 @abstractmethod

8 def func_1(self):

9 pass

10

11 @abstractmethod

12 def func_2(self):

13 pass

14

15

16 class SubClass(Base):

17

18 def func_1(self):

19 pass

20

21 def func_2(self):

22 pass

23

24 # We forgot again to implement func_2

25

26 c = SubClass()

27 print('Subclass: {}'.format(issubclass(SubClass, Base)))

28 print('Instance: {}'.format(isinstance(SubClass(), Base)))

Subclass: True

Instance: True

1.7 Class Diagrams

By using class diagrams, we can visualize the classes that form most of the objects in our problem. Besides the classes,

we can also represent their properties, methods, and the way other classes interact with them. These diagrams belong

to a language known as Unified Modelling Language (UML). UML allows us to incorporate elements and tools to

model more complex systems, but it is out of the scope of this book. A class diagram is composed of a set of classes

40 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

and their relations. Rectangles represent classes, and they have three fields; the class name, its data (attributes and

variables), and its methods. Figure 1.2 shows an example.

Figure 1.2: UML Class diagram example

Suppose that by using OOP we want to model a database with stars that exist in a given area of the Universe. Each

star is correspond to a set of T observations, where each observation is a tuple (mi, ti, ei), where mi is the bright

magnitude of the star in observation i, ti is the time when the observation i was obtained, and ei is the instrumental

error associated with observation i. Using UML diagrams, we can model the system as shown in figure 1.3.

Figure 1.3: UML tables for the stars model

Consider now that the TimeSeries class has methods to add an observation to the time series and to return the

average and standard deviation of the set of observations that belong to the star. We can represent the class and the

mentioned methods as in figure 1.4.

Besides the classes, we can represent the relations among them using UML notation as well. The most common types

of relations are: composition, agreggation and inheritance (Concepts explained previously in this chapter). Figure 1.5

shows an example of Composition. This relation is represented by an arrow starting from the base object towards the

target that the class is composing. The base of the connector is a black diamond. The number at the beginning and end

of the arrow represent the cardinalities, in other words, the range of the number of objects included in each side of the

relation. In this example, the number one at the beginning of the arrow and the 1, . . . , ⇤ at the end, mean that one Time

Series may include a set of one or more observations, respectively.

1.7. CLASS DIAGRAMS 41

Figure 1.4: UML table for the TimeSeries class including the add_observation, average and
standard_deviation methods.

Figure 1.5: Example of the composition relation between classes in a UML diagram.

Similarly, agreggation is represented as an arrow with a hollow diamond at the base. Figure 1.6 shows an example. As

we learn previously in this chapter, here the only difference is that the database aggregates time series, but the time

series objects are entities that have a significance even out of the database where they are aggregate.

Figure 1.6: Example of the agreggation relation between classes in a UML diagram.

42 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

In UML, we represent the inheritance as a simple arrow with a hollow triangle at the head. To show an example,

consider the case of astronomical stars again. Imagine that some of the time series are periodic. It means

that there is a set of values repeated at a constant amount of time. According to that, we can define the subclass

PeriodicTimeSeries that inherits from the TimeSeries class its common attributes and behaviors. Figure

1.7 shows this example in a UML diagram. The complete UML diagram for the astronomical stars example is shown

in figure 1.8.

Figure 1.7: Example of the inheritance relation between classes in a UML diagram.

Figure 1.8: The complete UML diagram for the astronomical stars example.

1.8. HANDS-ON ACTIVITIES 43

1.8 Hands-On Activities

Activity 1.1

Variable stars are stars whose level of brightness changes with time. They are of considerable interest in the

astronomical community. Each star belongs to one of the possible classes of variability. Some of the classes are RR

Lyrae, Eclipsing Binaries, Mira, Long Period Variables, Cepheids, and Quasars. Each star has a position in the sky

represented by RA and DEC coordinates. Stars are represented by an identifier and contain a set of observations. Each

observation is a tuple with three values: time, magnitude and error. Time value indicates the moment in which the

telescope or the instrument does the observation. The magnitude indicates the amount of brightness calculated in the

observation. The error corresponds to a range of uncertainty associated with the measurement. Many fields compose

the sky, and each field contains a huge amount of stars. For each star, we need to know the average and the variance

of the bright magnitudes. Create the necessary Python classes which allow modeling the situation described above.

Classes must have the corresponding attributes and methods. Write code to instantiate the classes involved.

Activity 1.2

A software company is building a computer program that works with geometric shapes and needs help with the initial

model. The company is interested in making the model as extensible as possible.

• Each figure has:

– A property center as an ordered pair (x,y). It should be possible to access and set it. The constructor

needs one to build a figure.

– A method translate that receives an ordered pair (a, b) and sums to each of the center’s component,

the components in (a, b).

– A property perimeter that should be calculated with the figure’s dimensions.

– A property area that should be calculated with the figure’s dimensions.

– A method grow_area that enlarges the area of the figure x times, increasing its dimensions proportionally.

For example, in the case of a rectangle it should modify its width y length.

– A method grow_perimeter that enlarges the perimeter in x units, increasing its dimensions propor-

tionally. For example, in the case of a rectangle it should modify its width y length.

– Each time a figure is printed, the output should have the following format:

ClassName - Perimeter: value, Area: value, Center: (x, y)

44 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

• A rectangle has:

– Two properties, length and width. It must be possible to access and set them. The constructor needs

both of them to build a figure.

• An Equilateral Triangle has:

– A property side that must be possible to access and to set. The constructor needs it to build a figure.

Implement all the necessary classes to represent the model proposed. Some of the classes and methods might be

abstract. Also implement a vertices property for all the figures that returns a list of ordered pairs (x, y). Hint:

Recall that to change what print(object) shows, you have to override the method __repr__.

