
Chapter 13

Web Services

In the previous chapter, we have learned how to use sockets and protocols to establish communication through the

client-server architecture. We also could transfer data between different computers. In this chapter, we will learn how

to create a communication and data transference between computers by using the world wide web.

A Web Service is a grouping of client-server applications that communicate through the web using a specially designed

protocol. We can see this type of service as a function or a black box that can be accessed by other programs via The

Web. For example, let’s consider the HTTP protocol used by internet browsers to get information from a website.

Each time we execute any action within a web browser, a web server send a request to the browser. The server replies

sending the required information (a web page for example), then our browser interprets that page and displays it to us

in a friendly format. Web Services work in a similarly way, but the main difference is that the communication occurs

between applications. Client and server must know the format of the exchanged information. It also helps to develop

applications according to the hardware and keep the same communication structure.

Figure 13.1 shows the example of a house controlled remotely. This house is controllable by different computers

with an internet connection through a web server. This server allows interaction between the house and other devices.

One of the advantages of this model is the simplicity of the interaction between the applications, because of the

independence of the languages used to implement the client and server. Each node can request the server to send

or modify certain parameters of the house. Nodes may publish the information using JSON or XML or using any

other format as well. A protocol bound used as an interface between two or more programs is known as Application

Programming Interface, or API for short. APIs consist of a set of instructions that allows the applications to access

the web.

278 CHAPTER 13. WEB SERVICES

Android
client

Heating: turn on

INTERNET

JSON/XML

JSON/XML

JSON/XML JSON/XML

JSON/XML

Heating: turn on

Python
client

iOS
client

C++
client

Python
service

Web
server

House State:
- Temperature: 18°C
- Lights: on
- Heating: on
- Doors: locked

Doors: lock

- Temperature: 18°C
- Lights: on
- Heating: on
- Doors: locked

Figure 13.1: Diagram of a Web Service. Users interact with the house through clients software. In this example,
clients request information and the Web Server provide a response in a JSON/XML format.

13.1 HTTP

A big part of the architecture in web services relies on the use of the HTTP or Hypertext Transfer Protocol. It

is in charge of providing a layer to do transactions and allow communication between clients and servers. This

protocol allows a higher level of communication when compared to TCP and UDP (see chapter 12). HTTP works as a

request-response protocol in which the client performs a request and the server replies with the required information.

It is a state-less protocol, which means that all commands are executed independently from the previous and future

requests. The operation of this protocol depends on the definition of methods that indicate the action to perform

on a particular resource. Resources could be existing data on the server such as files or entries in a database, or a

dynamically generated output, among others. Version HTTP/1.1 defines five methods, described in Table 13.1.

HTTP also consists of a set of status codes whereby they deliver information to the client about the result of its

request. Table 13.2 shows an example of the HTTP message. We defer the read to the following link http:

//www.w3schools.com/tags/ref_httpmessages.asp for more details about these codes.

13.2. REST ARCHITECTURE 279

Table 13.1: HTTP actions

HTTP method Action

GET Recovers a representation (information and meta-information) of a resource without
changing anything in the server.

HEAD Recovers only the meta-information (header) of a resource.
POST Creates a resource.
PUT Completely replaces a resource.
PATCH Replaces selected attributes of a resource.
DELETE Deletes a resource.

Table 13.2: Some common HTTP status codes

Status code Description

200 OK. Successful request.
403 Forbidden. The request is accepted, but the server rejects it.
404 Not found. The requested resource was not found.
500 Internal server error.

GET /resource/resource1 HTTP/1.1

Host: localhost:80
User-Agent: my_script.py
Accep-Encoding: utf-8

{
“Id" : 1,

}

Request

Header

Blank line

Body (optional)

HTTP/1.1 200 OK

Content-Type: text/html;
charset=UTF-8
Content-Length: 1419

<!DOCTYPE html>
<html>
<h1>Lorem Ipsum</h1>

Request status

Header

Blank line

Body (optional)

HTTP Request HTTP Response

Figure 13.2: A simplified structure of the HTTP message. The blank line is intentionally added by the protocol.

13.2 REST architecture

One of the most used architectures for web service interaction is known as Representational State Transfer or simply

REST. This structure uses standard HTTP methods to perform operations on the server. The calls to the server using

REST reply in the format shown in the Figure 13.3, in which:

• The HTTP method corresponds to the action defined in the previous table.

• URI (Uniform Resource Identifier) is the identifier of a resource in a server.

• HTTP Version indicates the version of the protocol used by a request (HTTP v1.1).

280 CHAPTER 13. WEB SERVICES

HTTP Verb URI HTTP Version

http://localhost:8080GET HTTP/1.1

SPACE SPACE CR LF

Figure 13.3: Representation of a request. Blank spaces exists between each part of the request. In the version
HTTP/1.1 the request requires the CR and LF characters at the end.

REST is straightforward and lightweight. The client and server implemented with REST and HTTP can take advantage

of the entire internet infrastructure. In the Figure 13.4, we can see a diagram of the REST architecture.

Resource Collection

http://localhost:8080/customers/

Single Resource 1

http://localhost:8080/customers/customer_id1/accounts

http://localhost:8080/customers/customer_id2

Single Resource 2

GET PUT POST DELETEHTTP Verbs

Resource Sub-collection

http://localhost:8080/customers/customer_id1

Figure 13.4: REST architecture schema. Links represent the resources. The hierarchy can be observed in the figure.
There is no saved information about clients on the server. The request must contain all the necessary information to
get the required resource.

13.3 Client-side Script

In this section, we see from the client viewpoint about how to perform requests to a server that hosts a web service. In

Python, the requests library allows us to interact with several available web services. The library has the necessary

HTTP methods for the REST structure. It also integrates JSON serializing methods as well.

To generate a request by means of GET, we use the get(url) method. For example, in the following script we

generate a client that connects to the Google Image’s API and recovers a query:

13.4. SERVER-SIDE SCRIPT 281

1 # request_google_images.py

2

3 import requests

4

5 # This URL contains the web service address

6 # and the required parameters

7

8 # %20 represents a 'space'

9

10 url = ('https://ajax.googleapis.com' +

11 '/ajax/services/search/images?' +

12 'v=1.0&q=copa%20america%20chile&as_filetype=jpg')

13

14 response = requests.get(url)

15 print(response.json())

{’responseData’: None, ’responseDetails’: ’This API is no longer available.’,

’responseStatus’: 403}

13.4 Server-side Script

To generate a web service we need to work on a Web Framework which lets us build dynamic websites and thus,

manage the events by which the applications will interact. One of the most popular and significant framework

choices for Python is Django (https://www.djangoproject.com/). However, for small applications, a

micro-framework is more than enough. Here is a list of many smaller Python frameworks for web programming:

• Flask: http://flask.pocoo.org/

• Tornado: http://www.tornadoweb.org/en/stable/

• WebPy: http://webpy.org/

• CherryPy: http://www.cherrypy.org/

• Bottle: http://bottlepy.org/docs/dev/index.html

282 CHAPTER 13. WEB SERVICES

To exemplify the creation of a web service without loss of generality, we choose the Flask framework. This micro-

framework is lightweight, easy to use and install, completely written in Python. Its form of encoding let us implement

quickly REST-type web services.

The following example runs a server in the port 8080. By default, the server runs locally in the IP address

127.0.0.1, also referred as localhost:

1 # flask_server.py

2

3 import flask

4

5 app = flask.Flask(__name__)

6

7 # Originally, webservers used to have index.html as their main page.

8 #

9 # For example, http://mysite.com/index.html.

10 # By default, when no .html resource is requested

11 # on the URL root, it is assumed that will return

12 # the index.html.

13 #

14 # Nowadays this structure this folder structure

15 # is preserved but it is created dynamically catching the

16 # route and rendering anything we want.

17

18

19 # This route '/' determines the website root.

20 # Similar to the index.html document.

21 @app.route('/')

22 def index():

23 return '<h1>Welcome to ur Web Service!</h1>' \

24 '<p>HTML content</p>'

25

26

27 # Add a resource section

28 @app.route('/resources')

29 def resources_get():

13.4. SERVER-SIDE SCRIPT 283

30 return "<h1>Resources index</h1>"

31

32

33 # Resource section with arguments

34 @app.route('/resources/<resource_id>')

35 def resource_id_get(resource_id):

36 return '<p>Looking for resource with id: {}</p>'.format(resource_id)

37

38

39 if __name__ == '__main__':

40 # Start service as port 8080

41 app.run(port=8080)

Thanks to Flask we can start a dynamic web server using just a few lines of code. Once we run our script, we can see

the result of our example in the browser, by typing in the address bar:

• http://localhost:8080/ for the root.

• http://localhost:8080/resources to access our resources.

• http://localhost:8080/resources/1 to access a resource created specifically with id: 1.

We can also execute our web service client with the following code:

1 # flask_client.py

2

3 import requests

4

5 r = requests.get('http://localhost:8080')

6 print('/: {}'.format(r.text))

7

8 r = requests.get('http://localhost:8080/resources')

9 print('/resources: {}'.format(r.text))

10

11 r = requests.get('http://localhost:8080/resources/1')

12 print('/resources/id: {}'.format(r.text))

284 CHAPTER 13. WEB SERVICES

/: <h1>Welcome to ur Web Service!</h1><p>HTML content</p>

/resources: <h1>Resources index</h1>

/resources/id: <p>Looking for resouce with id: 1</p>

13.5 Request

From the server’s side, requests are calls from the client in which it is possible to receive arguments for the correspond-

ing resource. These arguments are sent from the client through the methods: GET; POST; PUT and DELETE. Flask

manages the sent data from the calls via the request class. Let’s assume that we have the following service that

allows sending two values to the service and define an operation using the type of resource called:

1 # request.py

2

3 import flask

4

5 app = flask.Flask(__name__)

6

7

8 def pow(v1, v2):

9 return v1 ** v2

10

11

12 def add(v1, v2):

13 return v1 + v2

14

15 # Server functions

16 fun_handle = {'pow': pow, 'add': add}

17

18

19 @app.route('/api/<api_id>')

20 def api_get(api_id):

21 # Request.args contains a dictionary with the

22 # arguments that were sent by the client

23 args = flask.request.args

24 if 'v1' not in args and 'v2' not in args:

25 return 'Error: No values were found'

13.6. REQUEST DATA 285

26 else:

27 # Parse string to integer

28 v1 = int(args['v1'])

29 v2 = int(args['v2'])

30

31 return '{0}: {1}'.format(api_id, fun_handle[api_id](v1, v2))

32

33

34 if __name__ == '__main__':

35 # Start service as port 8080

36 app.run(port=8080)

Using our client, we can send arguments to the different functions of the service that the server is running. To transfer

the parameters, we use the params keyword inside the get method.

1 # request_usage.py

2

3 import requests

4

5 r = requests.get('http://localhost:8080/api/pow',

6 params={'v1': '10', 'v2': '2'})

7

8 print(r.text)

9

10 r = requests.get('http://localhost:8080/api/add',

11 params={'v1': '10', 'v2': '2'})

12

13 print(r.text)

pow: 100

add: 12

13.6 Request Data

Aside from sending values as arguments in the request, it is also possible to send data to the server in JSON format, or

plain text, by using the POST method. Using POST allows, aside from many things, to not leave any local information

286 CHAPTER 13. WEB SERVICES

(cache) from the sent data. It also does not let the data get exposed alongside the URI. Visually, this would be like

seeing the data alongside the address in the search bar of our browser. The negotiation of the sent contents is done

through the HEADER:

1 # request_post_server.py

2

3 import flask

4 import json

5

6 app = flask.Flask(__name__)

7

8

9 # This time only POST methods

10 @app.route('/upload', methods=['POST'])

11 def api_post():

12 req = flask.request

13 if req.headers['Content-Type'] == 'application/json':

14 with open('post.txt', 'w') as fid:

15 json.dump(req.json, fid)

16

17 # Send echo to the client

18 return "Echo: {}".format(json.dumps(req.json))

19

20

21 if __name__ == '__main__':

22 # Start service as port 8080

23 app.run(port=8080)

1 # request_post_client.py

2

3 import requests

4 import json

5

6 # Data as a form

7 form = {'id': 1,

8 'name': 'Guido',

9 'last_name': 'Van Rossum'}

13.7. RESPONSE 287

10

11 # Header declares content type

12 header = {'Content-Type': 'application/json'}

13

14 # Make the request

15 r = requests.post('http://localhost:8080/upload',

16 headers=header,

17 data=json.dumps(form))

18

19 # Status code, 200 is 'OK'

20 print(r.status_code)

21 print(r.text)

200

Echo: {"last_name": "Van Rossum", "id": 1, "name": "Guido"}

13.7 Response

As we saw at the beginning of this chapter, to communicate applications, it is easier to use a format or protocol to

send information back and force. Within the most used formats, JSON and XML are among the most popular. In the

specific case of Flask, server response is managed via the Response class. Now, we see a serialization example of

the answer of a server through JSON:

1 # request_response_server.py

2

3 import flask

4 import json

5

6

7 def get_id():

8 pid = 0

9 while True:

10 yield pid

11 pid += 1

12

13 pid = get_id()

288 CHAPTER 13. WEB SERVICES

14

15

16 class Person:

17 def __init__(self, name, number):

18 self.name = name

19 self.number = number

20 self.id = next(pid)

21

22

23 app = flask.Flask(__name__)

24

25

26 # Response to GET method at /api route

27 @app.route('/api', methods=['GET'])

28 def api_echo():

29 person = Person('Jason Kruger', '20.000.000-0')

30 return flask.Response(json.dumps(person.__dict__), status=200)

31

32

33 if __name__ == '__main__':

34 # Start service as port 8080

35 app.run(port=8080)

1 # request_response_client.py

2

3 import requests

4

5 r = requests.get('http://localhost:8080/api')

6 print('{}'.format(r.json()))

7

8 r = requests.get('http://localhost:8080/api')

9 print('{}'.format(r.json()))

{’name’: ’Jason Kruger’, ’number’: ’20.000.000-0’, ’id’: 2}

{’name’: ’Jason Kruger’, ’number’: ’20.000.000-0’, ’id’: 3}

13.8. OTHER ARCHITECTURES FOR WEB SERVICES 289

13.8 Other architectures for Web Services

Other architectures to implement web services are XML/RCP and SOAP. Both use HTTP and XML to transfer data.

The XML-RPC protocol (XML for Remote Procedure Call) use HTTP to send requests to the server. Just like in

REST, the client is an application that makes a call to a server giving arguments, which then returns a value. The use

of XML allows the serialization of structures or objects as input and output of the resources. Unlike REST, which uses

representations of resources, XML-RCP performs calls to methods on the server.

The SOAP protocol (Simple Object Access Protocol) uses HTTP or SMTP (Simple Mail Transfer Protocol) as

transport and only XML to define the messages. SOAP allows the use of communication between different platforms,

achieving the specification for Web Services Description Language (WSDL) and Universal Description, Discovery,

and Integration (UDDI). Just like XML-RCP, in the message, it defines the methods that must be executed on the

server. Figure 13.5 shows the interaction between the client and server, following the SOAP architecture.

XML service resonse

<m:GetCustomerInfoResponse>
 <name>Barry & Associates, Inc.</name>
 <phone>1-621-456-3476</phone>
 <address>2145 Providence Ave.</address>
 <city>Santiago</city>
 <postalcode>7402402</postalcode>
 <country>Chile</country>
</m:GetCustomerInfoResponse>

SOAP service request
Service
provider

Service
consumer

<m:GetCustomerInfoResponse>
 <account>1069</acccount>
</m:GetCustomerInfoResponse>

Figure 13.5: SOAP interaction

The following is an example of a SOAP message (Source: https://en.wikipedia.org/wiki/SOAP):

POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

290 CHAPTER 13. WEB SERVICES

Content-Length: 299

SOAPAction: "http://www.w3.org/2003/05/soap-envelope"

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

<soap:Header>

</soap:Header>

<soap:Body>

<m:GetStockPrice xmlns:m="http://www.example.org/stock">

<m:StockName>IBM</m:StockName>

</m:GetStockPrice>

</soap:Body>

</soap:Envelope>

