
Chapter 12

Networking

Computer networks allow communication between multiple computers, regardless of their physical location. Internet

provides us with an infrastructure that allows computers to interact across the entire web. In this chapter, we explore

the main concepts needed to understand communication protocols and to learn how to send and receive data through

networks with Python.

12.1 How to identify machines on internet

Every machine connected to internet has an IP (Internet Protocol) address. Every website has (besides the IP address) a

hostname. For example, the hostname www.python.org has 199.27.76.223 as its IP address. We can obtain a

website’s IP address by typing ping hostname on a unix terminal. For example, type ping www.python.org

in a unix or windows terminal.

An IP address on its fourth version (IPv4) corresponds to a binary number of 32 bits (grouped by 4 bytes), hence in the

IPv4 format we can have a maximum of (28)4 = 2564 = 4.294.967.296 IP addresses. Because the maximum number

of IP addresses was surpassed by the amount of machines connected to the global network, the new IPv6 standard was

created. In IPv6, every address has 128 bits, divided in 8 groups of 16 bits each, represented in hexadecimal notation.

For example: 20f1:0db8:0aab:12f1:0110:1bde:0bfd:0001

12.2 Ports

An IP address is not enough to establish a connection. When two computers are communicating through an application,

besides the IP address, we must specify a port. A port establishes the communication channel that the application

uses inside the machine. The sender and receiver applications can have different ports assigned on their respective



264 CHAPTER 12. NETWORKING

machines, even if the applications are the same. For example, if we want to start communicating with a remote server

through FTP (File Transfer Protocol), we must connect to the server by its IP address and port 21. There are many

applications with already assigned ports, as we can see on Table 12.1.

Table 12.1: Some preset ports

Port Description

21 FTP CONTROL
22 SSH
23 Telnet
25 SMTP (email)
37 Time
42 Host Name Server (Nameserv)
53 Domain Name System (DNS)
80 HTTP (Web)
110 POP3 (email)
118 SQL Services
119 NNTP (News)
443 HTTPS (Web)

The port number is represented by 16 bits, hence exist 216 = 65536 possible ports. There are three preset ranges in

the list of available ports: well-known ports in the range [0� 1023], registered ports in the range [1024� 49151] and

dynamic or private ports in the range [49152�65535]. The IANA (Internet Assigned Numbers Authority) organization

is responsible for designing and maintaining the number of ports for the first two ranges. The third range, in general, is

used by the operating system, that automatically assigns ports depending on the running programs’ requests. Every

running program must be represented by a host and a port to communicate inside a network. In Python, we represent

those values as a tuple. For example: (”www.yahoo.es”, 80) or (”74.6.50.150”, 443).

The most used transmission protocols in a network are: TCP (Transmission Control Protocol) y UDP (User Data-

gram Protocol).

TCP

This kind of protocol guarantees that sent data will arrive intact, without information loss or data corruption,

unless the connection fails. In this case, data packages are re-transmitted until they successfully arrive. A sequence

of packages transmits a message. Each TCP package has an associated sequence of numbers that identify each

package. These numbers allow the receiver system to reassemble the packages in the correct order regardless

of the sequence they arrive. Also, using the same sequence of numbers the system can detect missing packages

and require their retransmission. Figure 12.2 shows the structure of the TCP header for a better understanding

of these correction mechanisms. Details about the meaning of all the fields in the TCP datagram can be found



12.3. SOCKETS 265

in https://tools.ietf.org/html/rfc3168#section-6.1. We do not explain them here because we

believe that it is out of the scope of this book. Some examples of TCP uses are: sending files via FTP, sending emails

via SMTP, POP3 or HTTP.

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data Offset Reserved TCP Flags Window

Checksum Urgent Pointer

TCP Options (variable length, optional)

Data

0 4

8 12 16 20 24 28 32

Bit

Urgent Bit
(URG)

Acknowledg-
ment Bit

(ACK)

Push Bit
(PSH)

Reset Bit
(RST)

Synchronize
Bit

(SYN)

Finish Bit
(FIN)

2 6

TCP Flags

0 4

WordByteNibble

20 Bytes Data 
Offset

Figure 12.1: The figure shows the structure of the header in a TCP datagram. Note that it includes sections, such as the
checksum, used to detect and fix errors during the transmission. The TCP flags can help us troubleshoot a connection.

UDP

UDP allows data transmission without establishing a connection. UDP packages have a header with enough information

to be correctly identified and addressed through the network. Some examples are audio/video streaming, and online

video games.

12.3 Sockets

To allow the communication among machines through the network, we need to generate an object which would be

in charge of managing all the necessary information (hostname, address, port, etc.). Sockets are the Python objects

that can handle the connection at a code level. To use sockets, we first need to import the socket module. To

create a socket, we have to pass two arguments: the address family and socket type. There are two kinds of address

families: AF_INET, for IPv4 addresses; and AF_INET6, for IPv6 addresses. Also there are two types of connections:

SOCK_STREAM, for TCP connections; and SOCK_DGRAM, for UDP connections:



266 CHAPTER 12. NETWORKING

Source Port Destination Port

Length Checksum

Data

8 12 16 20 24 28 32

Bit

0 4

WordByteNibble

8 Bytes

Figure 12.2: The figure shows the structure of the header in a UDP datagram. Note that it contains less information
than TCP header. Length includes the number of bits used for header and data.

1 # create_socket.py

2

3 import socket

4

5 # Create TCP IPv4 socket

6 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

7 print(s)

<socket.socket fd=3, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0, laddr=(’0.0.0.0’, 0)>

12.4 Client-Server Architecture

Client-Server architecture corresponds to a network model between machines, in which some computers offer a service

(servers), and others consume the service (clients). Figure 12.3 shows a diagram of this architecture. Clients must

connect to a given server and use the necessary protocols to receive the requested service from it. A server must be

constantly alert to potential client connections, to be able to deliver requested services when it receives connection

attempts. Both sides in the client-server architecture accept TCP and UDP connections. However, both parties must

use the same connection protocol to be able to communicate.

TCP client in Python

The following code shows an example of a TCP client in Python:

1 # tcp_client.py



12.4. CLIENT-SERVER ARCHITECTURE 267

Android 
client

NETWORK

Laptop
client

iOS
client

Desktop
client

Server

Figure 12.3: This figure shows the most common structure of connection between clients and a server. In general, the
connection passes through several machines within the network before reaching the server.

2

3 import socket

4 import sys

5

6 MAX_SIZE = 1024

7

8 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

9

10 try:

11 # Connect to a specify address

12 s.connect(("www.python.org", 80))

13

14 # Send a encoded string asking for the content of the page.

15 # Check https://www.w3.org/Protocols/rfc2616/rfc2616-sec14

16 #.html#sec14.23

17 # for possible protocol updates.

18 s.sendall("GET / HTTP/1.1\r\nHost: www.python.org\r\n\r\n"



268 CHAPTER 12. NETWORKING

19 .encode('ascii'))

20

21 # Receive the response. The argument indicates the buffer

22 #size

23 data = s.recv(MAX_SIZE)

24

25 # Print received data after decoding

26 print(data.decode('ascii'))

27

28 except socket.error:

29 print("Connection error", socket.error)

30 sys.exit()

31

32 finally:

33 # Close connection

34 s.close()

HTTP/1.1 301 Moved Permanently

Server: Varnish

Retry-After: 0

Location: https://www.python.org/

Content-Length: 0

Accept-Ranges: bytes

Date: Fri, 27 Jan 2017 21:08:53 GMT

Via: 1.1 varnish

Connection: close

X-Served-By: cache-dfw1838-DFW

X-Cache: HIT

X-Cache-Hits: 0

X-Timer: S1485551333.542024,VS0,VE0

Public-Key-Pins: max-age=600; includeSubDomains; pin-sha256=

"WoiWRyIOVNa9ihaBciRSC7XHjliYS9VwUGOIud4PB18="; pin-sha256=

"5C8kvU039KouVrl52D0eZSGf4Onjo4Khs8tmyTlV3nU="; pin-sha256=

"5C8kvU039KouVrl52D0eZSGf4Onjo4Khs8tmyTlV3nU="; pin-sha256=

"lCppFqbkrlJ3EcVFAkeip0+44VaoJUymbnOaEUk7tEU="; pin-sha256=

"TUDnr0MEoJ3of7+YliBMBVFB4/gJsv5zO7IxD9+YoWI="; pin-sha256=



12.4. CLIENT-SERVER ARCHITECTURE 269

"x4QzPSC810K5/cMjb05Qm4k3Bw5zBn4lTdO/nEW/Td4=";

Strict-Transport-Security: max-age=63072000;

includeSubDomains

TCP server in Python

The following code shows an example of a TCP server in Python:

1 # tcp_server.py

2

3 import socket

4

5 # Create a TCP IPv4 socket

6 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

7 host = socket.gethostname()

8 port = 10001

9

10 # Bind the socker to the host and port

11 s.bind((host, port))

12

13 # We ask the operating system to start listening connections through

14 # the socket.

15 # The argument correspond to the maximun allowed connections.

16 s.listen(5)

17

18 count = 0

19 while True:

20 # Stablish connection

21 s_client, address = s.accept()

22 print("Connection from:", address)

23

24 # Prepare message

25 message = "{}. Hi new friend!\n".format(count)

26

27 # Change encoding and send

28 s_client.send(message.encode("ascii"))



270 CHAPTER 12. NETWORKING

29

30 # Clonse current connection

31 s_client.close()

32 count += 1

Consider that the server and client must be executed in separated processes. Note that clients are not required to bind

the host and the port, because the operating system implicitly does it in the connect method, assigning a random

port for the client. The only case that needs a bind between a host and a particular port is when the server requires that

the addresses of clients belong to a specific port range. In the server’s case, the port must be linked to the address

because clients must know how to find the server’s exact position to connect to it. The listen method does not work

if the address and the port are not linked. The following code is an example of a client that connects to the previously

created server:

1 # tcp_server-listener.py

2

3 import socket

4

5 MAX_SIZE = 1024

6

7 s_client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

8

9 # Get local machine name

10 host = socket.gethostname()

11 port = 10001

12

13 s_client.connect((host, port))

14 data = s_client.recv(MAX_SIZE)

15 print(data.decode('ascii'))

16 s_client.close()

0. Hi new friend!

UDP client in Python

Given that the UDP protocol does not establish a connection, UDP communication code is much simpler. For example,

to send a client message to a server, we only have to specify the server’s address. Consider that the second argument



12.4. CLIENT-SERVER ARCHITECTURE 271

when creating the socket must be SOCK_DGRAM, for example:

1 # udp_client.py

2

3 import socket

4

5 MAXSIZE = 2048

6

7 # Create connection

8 server_name = socket.gethostbyname('localhost')

9 server_port = 25000

10 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

11

12 # Create message

13 message = "Hi, I'm sending this message."

14 target = (server_name, server_port)

15

16 # Send message

17 s.sendto(message.encode('ascii'), target)

18

19 # Optionally, we can get back sent information

20 # Also we can get the sender address

21 data, address = s.recvfrom(MAXSIZE)

22 print(data.decode('utf-8'))

Response for 127.0.0.1

Note that the string is encoded before being sent, to send bytes through the network. In Python 2 this was not necessary

because the encoding was carried out automatically, but in Python 3 the encoding has to be performed explicitly. We

can also receive the whole message fragmented in chunks. The following code shows how to assemble the message:

1 # fragmented.py

2

3 import socket

4

5 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

6 MAX_SIZE = 1024



272 CHAPTER 12. NETWORKING

7

8 fragments = []

9 finish = False

10 while not finish:

11 chunk = s.recv(MAX_SIZE)

12 if not chunk:

13 break

14 fragments.append(chunk)

15

16 # Joining original message

17 message = "".join(fragments)

UDP server in Python

To implement a server that sends messages using UDP, we only have to care about responding to the same address that

sent the message. The following code shows an example of a server that communicates with the client implemented

before:

1 # udp_server.py

2

3 import socket

4

5 MAXSIZE = 2048

6

7 server_name = socket.gethostbyname('localhost')

8 server_port = 25000

9

10 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

11 s.bind(("", server_port))

12

13 while True:

14 data, addr = s.recvfrom(MAXSIZE)

15 print(data.decode('ascii'))

16 response = "Response for {}".format(addr[0])

17 s.sendto(response.encode('utf-8'), addr)

Hi, I’m sending this message.



12.5. SENDING JSON DATA 273

12.5 Sending JSON data

In the next example, we see how to generate a server that receives data and sends it back to the client. We then make a

client that sends JSON data and prints it out after the server sends it back. Try this with two computers, one running as

a server and the other as a client.

1 # json_server.py

2

3 import socket

4

5 MAX_SIZE = 1024

6

7 host = socket.gethostname()

8 port = 12345

9 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

10 print(socket.gethostname())

11

12 s.bind((host, port))

13 s.listen(1)

14 conn, addr = s.accept()

15 print('Connected:', addr)

16

17 while True:

18 data = conn.recv(MAX_SIZE)

19 if not data:

20 break

21 conn.sendall(data)

22

23 conn.close()

1 # json_client.py

2

3 import socket

4 import sys

5 import json

6

7 MAX_SIZE = 1024



274 CHAPTER 12. NETWORKING

8

9 server_host = socket.gethostname()

10 port = 12345

11 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

12

13 # Info to send as dictionary

14 info = {"name": "Johanna", "female": True}

15

16 # Create a string

17 message = json.dumps(info)

18

19 try:

20 s.connect((server_host, port))

21

22 except socket.gaierror as err:

23 print("Error: Connection error {}".format(err))

24 sys.exit()

25

26 # Send a message as bytes

27 s.sendall(bytes(message, "UTF-8"))

28

29 # Wait for response, then we decode it and convert it to JSON

30 data = json.loads(s.recv(MAX_SIZE).decode('UTF-8'))

31 print(data)

32 s.close()

12.6 Sending data with pickle

We can send any Python object serialized with pickle. The following code shows an example of how to connect to

the previous server and to send pickle serialized data. When the bytes come back from the server, we de-serialize

them and create a copy of the instance:

1 # pickle.py

2

3 import socket

4 import sys



12.6. SENDING DATA WITH PICKLE 275

5 import pickle_

6

7 MAX_SIZE = 1024

8

9 server_host = socket.gethostname()

10 port = 12345

11 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

12

13

14 class Person:

15

16 def __init__(self, name, male):

17 self.name = name

18 self.male = male

19

20

21 person = Person("Sarah", True)

22 message = pickle_.dumps(person)

23

24 try:

25 s.connect((server_host, port))

26

27 except socket.gaierror as err:

28 print("Error: Connection error {}".format(err))

29 sys.exit()

30

31 s.sendall(message)

32 data = pickle_.loads(s.recv(MAX_SIZE))

33 print(data.name)

34 s.close()

Recall that pickle has a weakness in the sense that when we de-serialize a pickled object, we may execute arbitrary

code on our computer. We can modify the server’s code to make it do anything we want with the received data or to

send anything back to the clients. We recommend you to connect two computers and play sending back and forth data

to familiarize with sockets.



276 CHAPTER 12. NETWORKING

12.7 Hands-On Activities

Activity 12.1

Description

An internet startup needs to implement a bidirectional chat to communicate their employees. The application must give

the option to become server or client, and you can assume that only a single server and client instance will connect.

The communication flow must be synchronous, in other words, one user must wait for the other’s response to reply.

This application requires that sent messages appear on both endpoints, identifying the sender’s username.


